Article: Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model
Grant M. Rotskoff, Gavin E. Crooks, Phys. Rev. E, 92, 060102 (2015)
[ Full text | Journal| arXiv ]
Abstract
A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.