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FIG. 1: The Stochastic Processing Unit (SPU). (Left panel) The Printed Circuit Board for our 8-cell
SPU. (Right panel) Illustration of eight unit cells that are all-to-all coupled to each other, as in our SPU.
Each cell contains an LC resonator and a Gaussian current noise source, as shown in the circuit diagram on
the top right. The circuit diagram on the bottom depicts two capacitively coupled unit cells.

2. The Stochastic Processing Unit

We now introduce our stochastic processing unit (SPU), which is depicted in the left panel of Fig. 1.
The SPU is constructed on a Printed Circuit Board (PCB). From the lower left corner to the upper right
corner, one can see the line of components corresponding to 8 unit cells (LC circuits), while the components
arranged in the triangle on the upper left correspond to the controllable couplings that couple the unit cells.
We remark that we constructed three nominally identical copies of our SPU circuit, to test the scientific
reproducibility of our experimental results.

The SPU can be mathematically modeled as a set of capacitively-coupled ideal LC circuits with noisy
current driving. The diagram for this model is shown in the right panel of Fig. 1. Doing a simple circuit
analysis reveals that the equations of motion for this circuit are

dI = L�1
V dt (6)

dV = �C�1R�1
V dt � C�1

Idt +
p

20C
�1

N [0, I dt], (7)

where I = (IL1, . . . ILd)
T is the vector of inductor currents and V = (VC1, . . . VCd)

T is the vector of capacitor
voltages. In the above, C is the Maxwell capacitance matrix, whose diagonal elements are Cii = Cii +Pd

j=1 Cij , and whose off-diagonal elements are Cij = �Cij . The values of resistors and inductors in each
cell are represented by the matrices R = RI and L = LI respectively. Finally, N [0, I dt] represents a mean-
zero normally distributed random displacement with covariance matrix I dt and 0 is the power spectral
density of the current noise source. If the magnitude of the noisy driving current is larger than the intrinsic
noise in the system, then 0 can be thought of as an effective temperature control for the thermodynamic
computation.

Equations (6) and (7) can be mapped to the Langevin equations (1) and (2) by making a change of
coordinates. Specifically, we introduce the magnetic flux vector � and the Maxwell charge vector Q, defined
as

� = LI, Q = CV. (8)

As shown in the Supplemental Information, � and Q are canonically conjugate coordinates, with � playing
the role of position and Q playing the role of momentum. We also introduce an effective inverse temperature
parameter � = �

�1
0 . In terms of these variables, Eqs. (6) and (7) become

d� = C�1
Q dt (9)

dQ = �L
�1� dt � R

�1C�1
Q dt + N [0, 2R

�1
�

�1I dt]. (10)

It is clear that Eqs. (9) and (10) are equivalent to (1) and (2) when we make the identifications x = �,
p = Q, M = C, � = R

�1, and U(x) = U (�) = 1
2�TL�1�. In these coordinates the Hamiltonian, without

(Left panel) The Printed Circuit Board for our 8-cell SPU. (Right panel) Illustration of eight unit 
cells that are all-to-all coupled to each other, as in our SPU. Each cell contains an LC resonator and 
a Gaussian current noise source, as shown in the circuit diagram on the top right. The circuit 
diagram on the bottom depicts two capacitively coupled unit cells. 

Thermodynamic Matrix Inversion

The input matrix A and its true inverse A−1 are shown, respectively, on 
the top left and top right. The relative Frobenius error versus the number 
of samples is plotted in the bottom left. The bottom right shows the 
experimentally determined inverse after gathering 12000 samples from 
the SPU. 

Many Artificial Intelligence (AI) algorithms are inspired by physics and employ 
stochastic fluctuations, such as generative diffusion models, Bayesian neural 
networks, and Monte Carlo inference. These algorithms are currently run on 
digital hardware, ultimately limiting their scalability and overall potential. Here, 
we propose a novel computing device, called Thermodynamic AI hardware, 
that could accelerate such algorithms. Thermodynamic AI hardware can be 
viewed as a novel form of computing, since it uses novel fundamental building 
blocks, called stochastic units (s-units), which naturally evolve over time via 
stochastic trajectories. In addition to these s-units, Thermodynamic AI 
hardware employs a Maxwell's demon device that guides the system to 
produce non-trivial states. We provide a few simple physical architectures for 
building these devices, such as RC electrical circuits. Moreover, we show that 
this same hardware can be used to accelerate various linear algebra primitives. 
We present simple thermodynamic algorithms for (1) solving linear systems of 
equations, (2) computing matrix inverses, (3) computing matrix determinants, 
and (4) solving Lyapunov equations.

https://normalcomputing.ai
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The SPU can be mathematically modeled as a set of capacitively-coupled ideal LC circuits 
with noisy current driving.
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FIG. 4: Effect of sampling rate and number of samples on sample quality. The y-axis plots the
error on the covariance matrix, namely the average relative Frobenius error per matrix element. The left
panel varies the number of samples, while the right panel varies the sampling time (i.e., the total length of
time over which one draws samples). Samples are taken from the SPU with all positive couplings turned on
and with the unit cell capacitances in configuration 3.

B. Gaussian sampling

Let us describe how to perform Gaussian sampling with our thermodynamic computer. Consider a zero-
mean multivariate Gaussian distribution (since we can always translate the samples by a constant vector to
generate a non-zero mean):

N (~x|⌃) =
1p

(2⇡)N |⌃|
exp

✓
�

1

2
~x

T⌃�1
~x

◆
, (15)

where ⌃ is the covariance matrix. Here we consider the case where the user provides the precision matrix
P = ⌃�1 associated with the desired Gaussian distribution (See Supplemental Information for the alternative
case where the user provides the covariance matrix ⌃.)

The Hamiltonian for the coupled oscillator system (see Supplemental Information for details) is given by:

H

⇣
~I, ~V

⌘
=

1

2
~V

TC~V +
1

2
~I

TL~I, (16)

where ~I is the vector of currents through the inductors in each unit cell, ~V is the vector of voltages across the
capacitors in each unit cell, C is the Maxwell capacitance matrix and L is the inductance matrix, respectively
given by

Ckl =

(P
j Ckj if k = l

�Ckl if k 6= l
, and Lkl =

(
Lk if k = l

0 if k 6= l
. (17)

Here, Ckk and Lk are the capacitance and inductance, respectively, of the k-th unit cell, and Ckj for j 6= k

is the capacitance that couples the k-th and j-th unit cells.
At thermal equilibrium, the dynamical variables are distributed according to a Boltzmann distribution,

proportional to exp(�H/kT ), and hence ~V is normally distributed according to:

~V ⇠ N [~0, kTC�1] (18)

Thus, if the user specifies the precision matrix P, then we can obtain the correct distribution for ~V by
choosing the Maxwell capacitance matrix to be:

C = kT P (19)

Hence, this describes how we can map the user-specified matrix to the matrix of electrical component values,
to obtain the desired distribution.
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FIG. 2: Voltage samples from two coupled unit cells of the SPU. Top Left: Histogram of the marginal
of cell i. Top Right: Absolute error between the target covariance matrix and the device covariance matrix,
similarly for the skewness and kurtosis, all calculated using the Frobenius norm. Bottom Left: Scatter plot
of voltage samples from both cells. Bottom Right: Histogram of the marginal of cell j. For the marginal
plots, the theoretical target marginal is overlaid as a solid red curve. Similarly, for the two-dimensional plot,
the theoretical curve corresponding to two standard deviations from the mean is overlaid as a solid red curve.

noise or dissipation, of the system is expressed as

H (�, Q) =
1

2
�TL�1� +

1

2
Q

TC�1
Q, (11)

and consequently the stationary distribution of Eqs. (9) and (10) is the Gibbs distribution given by

� ⇠ N [0, �
�1L], Q ⇠ N [0, �

�1C], (12)

where � and Q are independent of each other.
This equilibrium distribution is reached after a sufficient amount of time has elapsed, called the equili-

bration time. The equilibration time is closely related to the correlation time ⌧corr, which is the timescale
over which the time-correlation function of the system decays. In fact, equilibration can be interpreted as
the decorrelation of the system from its initial state, so the two timescales are essentially the same. The
correlation function decays exponentially in time with a time constant of approximately

⌧corr ⇡ Rcmax, (13)

where cmax is the largest eigenvalue of C (see e.g. [15]). There are some minor corrections involving the
other circuit parameters but these have relatively little effect. The amount of time one must wait in between
samples is determined by the degree to which correlation must be suppressed. In order for the correlation
function to decay to less than one percent of its original magnitude, we may wait for an interval of at least
5⌧corr, for example.

If one periodically measures the voltages, V , across the capacitors after the device has reached equilibrium,
one finds that the voltage samples will have a covariance matrix of

⌃V = R0C
�1

. (14)

Figure 2 is a visualization of such an experiment, where the measurements of the voltages of two coupled cells
are taken at 12 MHz. However, the sampling rate that one chooses for these measurements is an important
consideration. Sampling too fast will decrease the fidelity of the samples to the distribution due to the errors
from their time-correlation.

Gaussian Sampling
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The Hamiltonian for the coupled oscillator system is given by:


where I ⃗is the vector of currents through the inductors in each unit cell, 
V⃗ is the vector of voltages across the capacitors in each unit cell, C is 
the Maxwell capacitance matrix and L is the inductance matrix 


At thermal equilibrium, the dynamical variables are distributed according 
to a Boltzmann distribution, and hence V⃗ is normally distributed: 

The measured covariance matrix is related to the input Maxwell 
capacitance matrix.


