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Linear algebraic primitives are at the core of many modern algorithms in engineering, science, and
machine learnine. Hence. acceleratine these nrimitives with navel comnutine hardware wonld have




Thermodynamic Computing

Thermodynamic Computing 1911.01968 Tom Conte et al.

e Harness nature's innate computational capacity
o Use the underlying physics to compute (compute closer to the hardware)

e Noise as a resource, not a curse
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Transistor Energy Scaling
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Improving Compute per kKT

1) Algorithms

2)

3)

Quantum Computing

Novel (classical) Hardware

The Hardware Lottery
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Abstract

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to describe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.



Noise and computation
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Computational Building Blocks
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RC Stochastic Unit
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Stochastic Processing Unit (SPU)
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Stochastic Processing Unit Dynamics

Overdamped or Underdamped Langevin dynamics
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Gaussian Sampling with Stochastic Processing Unit

For harmonic oscillator system, at thermal equilibrium, x is Gaussian distributed:
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Matrix Inversion with Stochastic Processing Unit
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coming: Generation 1 hardware
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Thermodynamic Advantage
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Matrix Determinant with Stochastic Processing Unit

_ 1 _
fuis(a) = @) 22 2 exp (5072 e ),

AF = Fy — F, — —,B_lln (fdme‘ﬂ%(@) |

[ dz e=BVi(x)

Al AN s | A4
N () E )




Matrix Determinant with Stochastic Processing Unit (2)
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Thermodynamic Al
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Linear algebraic primitives are at the core of many modern algorithms in engineering, science, and
machine learning. Hence, accelerating these primitives with novel computing hardware would have
tremendous economic impact. Quantum computing has been proposed for this purpose, although
the resource requirements are far beyond current technological capabilities, so this approach remains
long-term in timescale. Here we consider an alternative physics-based computing paradigm based
on classical thermodynamics, to provide a near-term approach to accelerating linear algebra.

At first sight, thermodynamics and linear algebra seem to be unrelated fields. In this work, we
connect solving linear algebra problems to sampling from the thermodynamic equilibrium distri-
bution of a system of coupled harmonic oscillators. We present simple thermodynamic algorithms
for (1) solving linear systems of equations, (2) computing matrix inverses, (3) computing matrix
determinants, and (4) solving Lyapunov equations. Under reasonable assumptions, we rigorously
establish asymptotic speedups for our algorithms, relative to digital methods, that scale linearly
in matrix dimension. Our algorithms exploit thermodynamic principles like ergodicity, entropy,
and equilibration, highlighting the deep connection between these two seemingly distinct fields, and
opening up algebraic applications for thermodynamic computing hardware.
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