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Jeffreys’ divergence and the Jensen-Shannon divergence are shown to be related by an inequality that involves
a transcendental function of the Jeffreys divergence.
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and the Jensen-Shannon divergence [4–9, 3]
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are related by the inequality
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This inequality is considerable sharper than the inequal-
ity JS(p;q) ⩽ 1

2 Jeffreys(p;q) described by Lin [4].
The rst part of inequality (1), JS(p;q) ⩽

1
4 Jeffreys(p;q), is described by Taneja [10]. We note
that many interesting measures between probability
distributions can be written as an f-divergence [11, 12, 3]
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where the function f is convex and normalized such that
f(1) = 0. For example, if fD(x) ≡ − ln x then Cf is the rel-
ative entropy D(p||q). The relation Cf(p;q) ⩾ 0 follows
from an application of Jensen’s inequality [13] for convex
functions ⟨f(x)⟩ ⩾ f(⟨x⟩).

Now suppose that we can write

fc(x) = fb(x) − cfa(x)

where fa, fb and fc are all convex and normalized, and c is
a constant. Then ⟨fc⟩ = ⟨fb⟩− c⟨fa⟩ ⩾ 0 or equivalently

⟨fb⟩ ⩾ c⟨fa⟩
1Note that de nitions of Jeffreys divergence often omit the factors

of 1
2 .

The desired inequality follows given
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This inequality has the same form as the asymptotic
scaling between Jensen-Shannon and symeterized KL di-
vergence for in nitesimally different distributions. We
use the expansion log(1 + x) = x − x2/2 + O(x3) [9] and
nd that
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The second part of inequality (1) follows from the con-
vexity of the function f(x) = ln(1 + ex) (f ′′(x) ⩾ 0).
Jensen’s inequality [13] ⟨f(x)⟩ ⩾ f(⟨x⟩) implies that⟨
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Therefore,
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The last line follows from the previous line by a sec-
ond application of the same Jensen inequality. Since the
J-divergence ranges between zero and positive in nity,
whereas the Jensen-Shannon divergence ranges between
zero and ln 2 [i.e. 1 bit], this inequality has the correct
limits for identical (pi = qi, JS(p;q) = Jeffreys(p;q) = 0)
and orthogonal (piqi = 0, JS(p;q) = ln 2, Jeffreys(p;q) =
+∞) distributions.
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Note that we can split the Jensen-Shannon divergence
into two directed parts [5], and write the equivalent of in-
equality (1) with respect to each part separately.
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There is no corresponding lower bound; for any value
of the Jensen-Shannon divergence the Jeffreys divergence
can be arbitrarily large. Consider a pair of binary distri-
butions (a, 1 − a) and (b, 1 − b). Fix a and let b limit to
zero. As b decreases the Jensen-Shannon divergence will
limit to a xed value between 0 and ln 2, but the Jeffreys
divergence will increase to in nity.
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