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1.1 Additional reading

The canonical textbook for quantum computing and in-
formation remains Michael A. Nielsen’s and Isaac L.
Chuang’s classic “Quantum Computation and Quantum
Information” (affectionately know as Mike and Ike) [2, 3].
If you have any serious interest in quantum computing,
you should own this book!. These notes are going to
take a different cut through the subject, with more de-
tail in some places, some newer material, but neglecting
other areas entirely, since it is not nessary to repeat what
Mike and Ike have already so ably covered. John Preskill’s
lecture notes [4] are also excellent (If perennially incom-
plete).

For a basic introduction to quantum mechanics, see
“Quantum Mechanics: The Theoretical Minimum” by by
Leonard Susskind and Art Friedman [5]. The traditional
quantum mechanics textbooks are not so useful, since
they tend to rapidly skip over the fundamental and infor-
mational aspects, and concentrate on the detailed behav-
ior of light, and atoms, and cavities, and what have you.
Such physical details matter if you're building a quan-
tum computer, obviously, but not so much for program-
ming, and I think the traditional approach tends to ob-
scure the essentials of quantum information and how fun-
damentally different quantum is from classical physics.
But among such physics texts, I'd recommend “Modern
Quantum Mechanics” by J. J. Sakurai [6]>.

For gentler introductions to quantum computing see
“Quantum Computing: A Gentle Introduction” by
Eleanor G. Rieffel and Wolfgang H. Polak [7], and
“Quantum Computing: An Applied Approach”, by Jack
D. Hidary [8]. Scott Aaronson’s “Quantum Computing
since Democritus” [9] is also a good place to start, particu-
larly for computational complexity theory. Another inter-
esting foray is “Quantum Country” by Andy Matuschak
and Michael Nielsen, which is an online introductory
course in quantum computing, with builtin spaced rep-
etition [10].

Mathematically, quantum mechanics is applied linear
algebra, and you can never go wrong learning more linear
algebra. For a good introduction see “No Bullshit Guide
to Linear Algebra” by Ivan Savov [11], and for a deeper dive
“Linear Algebra Done Right” by Sheldon Axler [12].

For a deep dives into quantum information, both “The
Theory of Quantum Information” by John Watrous [13]
and “Quantum Information Theory” by Mark M. Wilde
[14] are excellent, if weighty, tombs.

And if you have very young children, start them
early with Chris Ferrie’s “Quantum Computing for Ba-
bies” [15].

2 Single qubit gates

Classically, there are only 2 1-bit logic gates, identity and
NOT. But in quantum mechanics the zero and one states

can be placed into superposition, so there are many other
possibilities.

2.1 Pauli gates

The simplest 1-qubit gates are the 4 gates represented by
the Pauli operators: I, X, Y, and Z.

Pauli-I (identity):

(s 1)

The trivial no-operation gate on 1-qubit, represented by
the identity matrix.

Pauli-X gate (X-gate, NOT, bit flip)

0 1
10
Applies a logical not to the computational basis, so that

|0) becomes |1) and [1) becomes |0).

Pauli-Y gate (Y-gate):

(¢ 5)

A useful mnemonic for remembering the matrix of the Y
gate is “Minus eye high” [1].

(Z-gate, phase flip)

(o)

Pauli-Z gate

Phase gate

2.2 Rotation gates

R, gate
o[ ] o
Rx(6)
R, gate
GRS e < B | I



R, gate

71%6 0
Rz(e) = |:e e+ié9:| (3)

R (0) =COSgI—iSing(nxX+nyY+nZZ) (4) j
Ry (0)
Rx(0) = cos(360) —in.sin(30)  —ny sin(56) — iny sin(56)
T Iny sin(46) — ingsin(16) cos(36) +in sin(36)
(5) Ry (

2.3 Powers of Pauli gates

Phase shift gate

Figure 1: Rotations of the Bloch Sphere
S (Phase, P, 'ess’) gate

1 0
(s %)
T ("tee”, /8) gate

1 0
(o ann )

n,
2.4 Hadamard-type gates

Hadamard gate The Hadamard gate is one of the most
interesting and useful of the common gates. Its effect is
a 7 rotation in the Bloch sphere about the axis % (x+72),
essentially half way between Z and X gates (fig. 22?)

PRI PRI 0
1 1 Vil 1 v
The Hadamard gate acts on the computation basis states

to create superpositions of zero and one states.
Nx

H [0)
HI1) =

s sk

(10) +11))
(10) —11))

I+)
I-)

Pseudo-Hadamard gate [16]
7
1 —1
Bho

Figure 2: Sphere of 1-qubit gates. Each point within this
1 1 sphere represents a unique (up to phase) 1-qubit gate. An-
tipodal points on the surface represent the same gate.



Figure 3: Coordinates of common 1-qubit gates

3 Decomposition of 1-qubit gates

3.1 ZYZ-Euler decompositions
3.2 General Euler decompositions

3.3 Bloch rotation decomposition

4 The canonical gate

The canonical gate is a 3-parameter quantum logic gate
that acts on two qubits [1, 1, 1].

CAN(ty, ty,t2)
LTt
=exp(—1§(txx DX +t,YRY+t,Z® Z)) (6)

Here, X = (9}4),Y=(9¢),and Z = (} ) are the 1-qubit
Pauli matrices.

Note that other parameterizations are common in the
literature. Often there will be a sign flip and/or the 7 fac-
tor is absorbed into the parameters. The parameterization
used here the nice feature that it corresponds to powers of
direct products of Pauli operators (up to phase) (see (12),
(16), (22)) .

12

CAN(ty, ty, t2) XXt | | YYt | | ZZt=

The canonical gate is, in a sense, the elementary 2-qubit
gate, since any other 2-qubit gate can be decomposed into
a canonical gate, and local 1-qubit interactions [17, 18, 19,

20].

— = u; Us
CAN (tX7 ty I tl)
- Uy Uy

Here we use '~’ to indicate that two gates have the same
unitary operator up to a global (and generally irrelevant)
phase factor. We'll use '~’ to indicate that two gates are
locally equivalent, in that they can be mapped to one an-
other by local 1-qubit rotations.

The canonical gate is periodic in each parameters with
period 4, or period 2 if we neglect a —1 global phase fac-
tor. Thus we can constrain each parameter to the range
[—1,1). Since X® X, Y®Y, and Z ® Z all commute, the
parameter space has the topology of a 3-torus.

However, the canonical coordinates of any given 2-
qubit gate are not unique since we have considerable free-
dom in the prepended and apended local gates. To remove
these symmetries we can constraint the canonical param-
eters to a “Weyl chamber” [1, 1].

(32te>ty >t 20U > (1-t) >ty >t.>0) (7)

This Weyl chamber forms a trirectangular tetrahedron.
All gates in the Weyl chamber are locally inequivalent
(They cannot be obtained from each other via local 1-
qubit gates). The net of the Weyl chamber is illustrated in
Fig. 4, and the coordinates of many common 2-qubit gates
are listed in table 1. Code for performing a canonical-
decomposition, and therefore of determining the Weyl co-
ordinates, can be found in the decompositions subpackage
of QuantumFlow [21].

R

CAN(tX7 ty ) tz)
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Figure 5: Location of the 11 principal 2-qubit gates in the Weyl chamber. All of these gates have coordinates of the form
CAN(%ky, Tky, 2k, ), for integer ky, ky, and k.. Note there is a symmetry on the bottom face such that CAN(ty, t, 0) ~
CAN(3 —ty, ty,0).
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5 Principal 2-qubit gates

5.1 Clifford gates

There are four unique 2-qubits gates in the Clifford group
(up to local 1-qubit Cliffords): the identity, CNOT, iSWAP,
and SWAP gates.

Identity gate

00
10 (8)
01

Controlled-NOT gate (CNOT, controlled-X, CX)

1000
CNOT—(868?> (9)
0010
~ CAN(Z,0,0)

Commonly represented by the circuit diagrams

1%

The CNOT gate is not symmetric between the two
qubits. But we can switch control e and target & with
local Hadamard gates.

T-213

0
) o

iISWAP-gate

Table 1: Canonical coordinates of common 2-qubit gates

Gate te ty tz te oty ot
< .}

I, 0 0 O 1 0 0

CNOT / CZ / MS 10 0

iSWAP /DCNOT 1 1 0 81

SWAP 11

Cv 1 00 30 0

iSWAP L1 s 19
3 3 5 3

DB § 5 O s 8 0

SWAP 11

T

SWAP s I i

B i 10

ecp bdod

GFT; bt

Sycamore i 11

Ising / CPHASE t 0 O

XY t t O t 1t O

Exchange /| SWAP* t t t t 1t 1-t

PSWAP 1ol

Special orthogonal ~ t, t,

Improper orthogonal % ty tz

XXY t t 9 t 1t 6
O t ot 5 t t



SWAP-gate

) (1)
1
2

5.2 XX gates

Gates in the XX (or Ising) class have coordinates
CAN(t,0,0), which forms the front edge of the Weyl
chamber. This includes the identity and CNOT gates.

XX gate (Ising)

XX(t) = e 12 tX®X (12)
cos(Gt) 0 0 —isin(§t)
o 0 cos(Tt) —isin(5t) 0
- 0 —isin(gt) cos(Gt) 0
—isin(§t) 0 0 cos(5t)
— CAN(t,0,0)
XXt
Mpglmer-Serensen gate (MS) [22, 23]
L
MS — <11) 113)
V2\{60t
_ 1
— CAN(—1,0,0)
~ CAN(L,0,0)
~CNOT

Proposed as a natural gate for laser driven trapped ions.
Locally equivalent to CNOT. The Mglmer-Sorensen
gate, or more exactly its complex conjugate MST =

CAN(3,0,0) is the natural canonical representation of the
CNOT/CZ/MS gate family.
Magic gate (M) [1,1, 1]
Lo ot 0
M=l 4] .
~ CAN(3,0,0) (15)
[24]

YY gate
YY(t) = e t3tY®Y (16)
cos(5t) 0 0 +isin(5t)
. 0 cos(45t) —isin(5t) 0
- 0 —isin(§t) cos(§t) 0
+isin(§t) 0 0 cos(5t)
= CAN(0,t,0)
~ CAN(t,0,0)
III
77 gate
ZZ(t) = e 131402 (17)

1 0 0 0

_[oe t 0 o0

“\o 0 eimto
0 0 0 1

= CAN(0,0, )
~ CAN(t,0,0)

Controlled-Y gate

1
cv_(g
0

~ CAN(

i§i> 18]

,0,0)

coro
Nl +ooo

Commonly represented by the circuit diagram:

(CZ or CSIGN)

cz—(}ith) 19)
1
0)

~ CAN(%,0,0)

Controlled-Z gate

oowo
w\»—‘ oroo
| coo

Commonly represented by the circuit diagrams

T4



Controlled-V gate (square root of CNOT gate):

(20)

The CV gate is a square-root of CNOT, since the V-gate
is the square root of the X-gate

R

Note that the inverse CV' is a distinct square-root of
CNOT. However CV and CV' are locally equivalent,
which is a consequence of the symmetry about t, = 1

on the bottom face of the Weyl chamber.

5.3 XY gates

Gates in the XY class forms two edges of the Weyl cham-
ber with coordinates CAN(t, t,0) (fort < %) and CAN(t, 1—
t,0) (for t > 1). This includes the identity and iSWAP
gates.

XY-gate Also occasionally referred to as the piSWAP (or
parametric iSWAP) gate.

0 coslnt) —isin(mt) 0
cos(mtt) —isin(7tt
XY(t) = (0 —isin(7tt) cos(7t) O) (21)
0 0 0 1
— CAN(t,t,0)
~ CAN(t, 1 —t,0)
Double Controlled NOT gate (DCNOT)
(22)

iSwap

Givens gate

Givens = exp(—i0(Y® X —X®Y)/2)
1 0 0 0
0 cos(0) —sin(0) 0
0 sin(0) cos(0) 0
0 0 0 1

~ CAN(%7 %50)

(23)

(24)

bSWAP (Bell-Rabi) gate [25]

(25)

1777 gate

0—-1+1 0 (26)

+1 0 0 O
|: 0+1+1 O:|
0 0

0+1

Dagwood Bumstead (DB) gate  [26] Of all the gates in the
XY class, the Dagwood Bumstead-gate makes the biggest
sandwiches. [26, Fig. 4]

(27)

DB

5.4 Exchange-interaction gates

Includes the identity and SWAP gates.

EXCH (XXX) gate

EXCH(t) = CAN(t, , 1) (28]



SWAP-alpha gates

SWAP® ~ CAN(«, o, «) (29)
T swaAP
SWAP —
i t
SWAP
I —
A
Exchange gates
vV SWAP-gate
Lo 0 0
SWAP — 0 ?(1+1) ?(171] 0 (30)
0 5(1-1) 3(1+1) 0
00 0 1
=CAN(3, 1. 1)
Inverse v SWAP-gate
L oo 0 0
SWAPT _ 0 ?(171) ?(1+1) 0 (31)
05(1+1) 5(1-1) 0
0" 0 0o 1

= CAN(, 2. 2)

Because of the symmetry around t, = % on the base of the
Weyl chamber, the CNOT and iSWAP gates only have one
square root. But the SWAP has two locally distinct square
roots, which are inverses of each other.

5.5 Parametric SWAP gates

The class of parametric SWAP (PSWAP) gates forms the
back edge of the Weyl chamber, CAN(3, 3, t.), connecting

the SWAP and iSWAP gates. These gates can be decom-
posed into a SWAP and ZZ gate.

12

CAN(%? %7tz)

pSwap gate (parametric swap) [27] The parametric swap
gate as originally defined in the QUIL quantum program-
ming language.

0 60
0 e O
: 00) 32)
0 01
11
272

(33)

PSWAP(0) | = ] CAN(t,t, 3 —9)
. - -
~ 1l o
7727 =
—{YH

QFT

Sycamore
iISWAP

pSWAP gates

Quantum Fourier transform (QFT) [1]

(34)

QFT| =

5.6 Orthogonal gates

An orthogonal gate, in this context, is a gate that can be
represented by an orthogonal matrix (up to local 1-qubit
rotations.) The special orthogonal gates have determinant
+1 and coordinates CAN(t,, t,,0), which covers the bot-
tom surface of the canonical Weyl chamber.

Special orthogonal gates

The improper orthogonal gates have determinant —1
and coordinates CAN(%, ty,t.), which is a plane connect-
ing the CNOT, iSWAP, and SWAP gates.



1 2c 0 0 —1i2s
_ 0 (1+i)(c—s) (1—1)(c+s) O
ECP—2< 0 (1-i)(cts) (1+i)(c—s) O > 137)
—1i2s 0 0 2c
. _ /252
c=cos(§) =15
N s =sin(%) = /252
Improper orthogonal gates
properoriiogonat & = CAN(}.}. §)

The peak of the pyramid of gates in the Weyl chamber

B (Berkeley) gate  [28] Located in the middle of the bot-  t,,¢ can be created with a square-root of iSWAP sandwich.

tom face of the Weyl chamber. Equivalent to Can(}, 1 1),
cos(g) 0 0 isin(§)
_ 0 cos(32) isin(3F) 0
B= 0 isin(32) cos(3F) 0 (35) il L | v
isin(g) 0 0 cos(g) ECP| = \/iSwapT \/iSwapT
1+v2 0 0 i o I L

The B-gate, as originally defined, has canonical param-

eters outside our Weyl chamber due to differing conven- ECP
tions for parameterization of the canonical gate. But of
course it can be moved into our Weyl chamber with local B
ates.
8 B and ECP gates, and ECP pyramid
424 gy
= CAN(3,1,0)
W-gate [1]
The B-gate is half way between the CNOT and DCNOT (1) i i 8
(~ iISWAP) gates, and thus it can be constructed from 3 CV W = \{Q \/? (38)
(square root of CNOT) gates. g ? *? (1)

A 2-qubit orthogonal and Hermitian gate (and therefore
also symmetric) WT = W, that applies a Hadamard gate to
a duel-rail encoded qubit.

Notably two-B gates are sufficient to create any other

2-qubit gate (whereas, for example, we need 3 CNOT’s in
general) [28] wl =~ Jj
L]
— - thx
R
CAN(ty,ty,tz)| ~ |B B This W gate is locally equivalent to ECP,
| I 75= H Ysy H 75z
w| = ECP

_ 1 (1 A2 1 21
Sy = + arccos (1 48in” 57ty cos 27'[’cz)

and thus three CNOT gates are necessary (and sufficient)

. cos 7tty, cos 7t
s; = —L arcsin — - 22 T (36)  to generate the gate.
1 —2sin” 57ty cos? 57t

ECP-gate [26]

11
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5.7 XXY gates

The remaining faces of the Weyl chamber are the XXY
family. Thanks to the Weyl symmetries, this family cov-
ers all three faces that meet at the SWAP gate.

XXY(t,8) = CAN(t,t,8) (39)

FSIM (Ferminoic Simulator) gate

(1]

Sycamore gate

5.8 Perfect entanglers

Perfect entaglers

6 Multi-qubit gates

Toffoli gate (controlled-controlled-not, CCNOT)

(40)

[eleleleleloleld
[ole]elelelelile]
[ele]elelelele]
[olelelelielele]
[elelelHelelele]
(el Helelolele]
i =lelelelelele]
el folelelelelw}]

12

Fredkin gate (controlled-swap, CSWAP)

10000000
01000000
00010000

Fredkin= | 900065000 (41)
00000010
00000100
00000001

Peres gate  [29]
10000000
01000000
00100000
_looo01000

Peres = | 66000001 (42)
00000010
00000100
00001000

Another gate that is universal for classical reversible com-
puting. It is equivalent to a Fredkin followed by a CNOT
gate.

CCZ gate (controlled-controlled-Z)

(43)

[ole]eleleleleltd
[elelelelele] o]
[ole]elelellele]
[elelelel Jolole]
[ole]el Helelele]
[elel Helololole]
el Helelelelele]
HOOOOOOO

Deutsch gate [30, 31, 32] A controlled-controlled-
iR, (20) gate. Mostly of historical interest, since this was
the first quantum gate to be shown to be computation-
ally universal [30]. Barenco [31] latter demonstrate a con-
struction of the Deutsch gate from 2-qubit ‘Barenco’ gates,
demonstrating that 2-qubits gates are sufficient for uni-
versality.

100000 O 0
010000 0 0
i b
Deutsch(0) = 000010 0 0 (44)
000001 0 0
000000 icos(0) sin(0)
000000 sin(0) icos(0)
Examining the controlled unitary sub-matrix, the

Deutsch gate can be thought of as a controlled iRx(0)2



gate.

Deutsch(0) = ———
iR2(0)

. Table 2: Coordinates of the 24 1-qubit Clifford gates.
7 Clitford Gates

Gate 0 ny ny n,
The 1-qubit Clifford gates are those gates that can be gen-

erated by the phase (S), Hadamard (H), and controlled-not

(CNOT) gates. I 0
Notes Vo lx 1 0 o0
. And Mike and Ike X T 1 0 0
. At least partially because I had to slog through it, so why shouldn’t you Va 1
suffer too? It’s a great book, but not easy. ik 1 0 0
. Open Problem: Zang et al.[28] derive the analytic decomposition of the hf %ﬂ 0 1 0
canonical gate to a B gate sandwich only up to local gates. Derive an
analytic formula for the necessary local gates to complete the canonical Y Tt 0 1 0
to B-sandwich decomposition. (page 11) h _%7_[ 0 1 0
S ln 0 0 1
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