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Thermodynamic geometry of minimum-dissipation driven barrier crossing
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We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic
acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation)
driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates
that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions,
which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest
at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same
principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in
single-molecule experiments), provides a design principle for the construction of thermodynamically efficient
coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular
motors.
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I. INTRODUCTION

Molecular machines built from protein complexes are
critical players in numerous cellular processes which convert
between different forms of energy, from muscle contraction
to intracellular transport of organelles and chromosomes to
crawling or swimming [1]. Central to molecular machine
function is their thermodynamic efficiency, that is, their ability
to translate free energy input into useful work without losing
too much energy in the form of heat dissipated into the
environment. Given high turnover and the costs associated
with energy dissipation, it seems plausible that evolution has
sculpted these machines to avoid needlessly wasting energy.

Indeed, several biomolecular machines (perhaps most
notably the F1 subunit of ATP synthase) have been shown
to have near-perfect efficiency at stall force or torque [2].
However, machines that must turn over on a timescale of
tens to hundreds of milliseconds do not operate near the slow,
quasistatic limit [3]. It behooves us to ask: What are the limits
of the energetic efficiency of these fluctuating soft-matter
objects when they operate rapidly and hence are driven far from
equilibrium? Furthermore, what mechanical manipulations of
these machines or within these machines attain these limits?

Thus there is a growing interest in general methods for
finding efficient protocols to drive nonequilibrium processes.
Conceptually, such a method would provide a framework
for understanding machine behavior, and for predicting the
interactions between components in biological systems (e.g.,
the Fo and F1 subunits within ATP synthase [4]) that have
been evolutionarily tuned to be energetically efficient [2].
Practically, single-molecule force-extension experiments [5]
and steered molecular dynamics simulations for measuring
free energy differences require less repetitions for a given
confidence interval when they dissipate less energy [6–9],
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so methods that identify low-dissipation protocols promise
to improve the efficiency of both experiments and numerical
simulations. Such progress can also help guide the design of
synthetic molecular machines [10], for example, to improve
artificial photosynthesis [11].

Recent theoretical advances in the field of nanoscale
nonequilibrium thermodynamics have provided tools to un-
derstand the nonequilibrium processes that these molecu-
lar motors perform. Exact results exist for some simple
models [12,13]; nevertheless, all but the simplest models,
and indeed any multidimensional protocol, remain beyond
the scope of exact analysis. We have recently developed a
linear response framework that, through a generalized friction
coefficient in control parameter space, gives a near-equilibrium
approximation for the system response to nonequilibrium
driving and hence an estimate for the average excess work
exerted in rapid driving of an arbitrary number of control
parameters [14–19]. This friction coefficient reports on the
resistance the system puts up to rapid changes in the control
parameter.

In this work we explore the implications of this theo-
retical framework for a model system of wide applicability
throughout biophysics and soft matter: a continuous analog
of a two-state system, a one-dimensional system with two
metastable mesostates separated by an energetic barrier, driven
by an additional time-dependent quadratic potential. This most
obviously forms a model for the force-induced unfolding using
optical tweezers or atomic force microscopy (AFM) of a
DNA or RNA hairpin [20]. To further the goals of optimizing
and designing efficient finite-time microscopic nonequilibrium
processes, we examine this generalized friction coefficient and
the resulting optimal protocols.

II. THEORETICAL FRAMEWORK

This section largely summarizes the original linear response
derivation in Ref. [14] of Eq. (4) in the current paper; see
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Refs. [21,22] for alternative routes to the same equation. A
physical system at thermal equilibrium with a heat reservoir at
temperature T is distributed over microstates x according to
the canonical ensemble

π (x|λ) ≡ exp β[F (λ) − E(x,λ)], (1)

where β = (kBT )−1 is the inverse temperature in natural units,
E(x,λ) is the system energy as a function of the microstate x

and a collection of experimentally controllable parameters λ,
and F (λ) ≡ −kBT ln

∫
dx exp[−βE(x,λ)] is the free energy.

The instantaneous rate of energy flow into the system

d

dt
E(x,λ) = dxT

dt
· ∂

∂x
E(x,λ) + dλT

dt
· ∂

∂λ
E(x,λ) (2)

naturally splits into energy flow due to system fluctuations
(heat flow, the first term on RHS) and energy flow due to
changes of the external parameters (work, second term on
RHS) [23].

The excess power exerted at time t ′ by the external agent on
the system (averaged over the ensemble of system responses),
over and above the average power on an equilibrated system,
is

Pex(t ′) ≡ −
[
dλT

dt

]
t ′

· 〈� f 〉�. (3)

Here angled brackets with subscript � indicate a nonequilib-
rium average dependent on the protocol �, the time course of
the control parameter λ. f ≡ − ∂(βE)

∂λ
are the forces conjugate

to the control parameters λ, and � f (t ′) ≡ f (t ′) − 〈 f 〉λ(t ′) is
the deviation of f(t ′) from 〈 f 〉λ(t ′), its equilibrium value at the
current control parameter. The Second Law of thermodynam-
ics imposes non-negativity on this average excess work for any
protocol.

Protocols that change in response to measurements of the
system can seemingly evade such limits, although the subtle
but inescapable thermodynamic costs of information process-
ing means there is no free lunch [24]. Such generalizations are
beyond the scope of this paper, where we restrict our attention
to protocols that are specified beforehand, with no feedback
based on the intermediate state of the system.

For twice-differentiable protocols, applying linear response
theory [25] gives an average excess power [14]

Pex(t ′) ≈
[
dλT

dt

]
t ′

· ζ [λ(t ′)] ·
[
dλ

dt

]
t ′

(4)

for the generalized friction tensor

ζij [λ(t ′)] ≡ β

∫ ∞

0
dt ′′〈δfj (0) δfi(t

′′)〉λ(t ′). (5)

Here 〈δfj (0) δfi(t ′′)〉λ(t ′) is the force autocorrelation function
defined in terms of equilibrium fluctuations δfi(t) ≡ fi(t) −
〈fi〉λ(t ′). When all conjugate forces are even under reversal
of momenta, this friction tensor ζ is symmetric, positive
semidefinite, and smoothly varying except at macroscopic
phase transitions, and thus induces a Riemannian geometry on
the space of thermodynamic states [26]. Intuitively, a system
that relaxes quickly to equilibrium, compared to the rapidity
of perturbation, is sufficient (though not necessary [27]) for
the linear response approximation to hold.

For a single control parameter λ, this simplifies to

Pex(t ′) = ζ (λ(t ′))
(

dλ

dt

)2

, (6a)

ζ (λ(t ′)) = β τ [λ(t ′)]〈δf 2〉λ(t ′), (6b)

for the force variance 〈δf 2〉λ(t ′) = 〈δf (0) δf (0)〉λ(t ′) and the
integral force relaxation time [28]

τ [λ(t ′)] ≡
∫ ∞

0
dt ′′

〈δf (0)δf (t ′′)〉λ(t ′)

〈δf 2〉λ(t ′)
. (7)

III. MODEL SYSTEM

We simulate a single particle diffusing over a one-
dimensional energy profile E(x,xs) = Es(x,xs) + Em(x) com-
posed of two components (Fig. 1). The bistable molecular
potential

Em(x) = −kBT ln
{
e− 1

2 βkL
m(x+xm)2 + e−β[ 1

2 kR
m(x−xm)2+	E]} (8)

is motivated by the statistical mechanics of a system with
two metastable ensembles of conformational states, such as a
two-state biomacromolecule with folded- and unfolded-state
ensembles (e.g., an DNA or RNA hairpin). The two confor-
mational states each induce a quadratic potential, centered on
x = xm and −xm, respectively. The right (unfolded) state has
an energy offset 	E from the left (folded) state. The specific
form of the potential gives the free energy of the particle
assuming that at each position coordinate it fluctuates between
the two conformational states, with residence probabilities
given by the Boltzmann weights of each conformational state
at that particular position.

The harmonic spring potential Es(x,xs) = 1
2ks(x − xs)2,

with time-dependent minimum xs and spring constant ks,
represents mechanical manipulation by optical tweezers or
AFM, both hereafter generically referred to as a “trap.” The
single control parameter λ = xs (the location of the minimum
of the harmonic potential) represents the preferred separation
imposed by the trap, for example, the distance between foci
of two optical traps, or between an immobilized surface and
AFM cantilever. During a typical force-extension experiment
this minimal-energy separation is increased to unfold the

Bistable 
potential

Moving 
harmonic 

spring

E

energy offset E
curvature

curvature ks

 = xs

xm

Em(x)

Es(x,xs)

kL
m

kR
m

FIG. 1. The total potential E(x,xs) is the sum of a time-
independent bistable potential Em(x) (solid curve) and a harmonic
potential Et(x,xs) (dashed curve) whose location depends on time
through the control parameter λ = xs, the trap minimum.

052106-2



THERMODYNAMIC GEOMETRY OF MINIMUM-DISSIPATION . . . PHYSICAL REVIEW E 94, 052106 (2016)

FIG. 2. Total potential energy landscape E(x,xs) [bistable poten-
tial Em(x) plus quadratic potential Es(x,xs)] as a function of particle
position x. Different curves within a subplot have different trap
minima xs. Ascending rows have higher molecular barrier heights
β	E‡

m. Columns to the right have higher trap strengths ks.

macromolecule (in our model pulling the particle from the left
to the right basin) or decreased to refold the macromolecule.
For varying trap minimum the particle experiences a varying
total potential (Fig. 2).

Straightforward calculus leads to the equilibrium probabil-
ity distribution

π (x|xs)

= 1

Z
e− 1

2 βks(x−xs)2(
e− 1

2 βkL
m(x+xm)2 +e−β[	E+ 1

2 kR
m(x−xm)2]) (9)

for the partition function

Z =
√

2π

β

(
e− 1

2 βkL
ch(xs+xm)2√

ks + kL
m

+ e−β[	E+ 1
2 kR

ch(xs−xm)2]√
ks + kR

m

)
. (10)

Here the characteristic spring constant

k
L/R
ch ≡ [

k−1
s + (

kL/R
m

)−1]−1 = ksk
L/R
m

ks + k
L/R
m

(11)

is half the harmonic mean of the two spring constants ks

and k
L/R
m . To ease analytic interpretation and reduce the

dimensionality of parameter space, we henceforth restrict our
attention to basins of equal curvature (kL

m = kR
m = km).

For no energy offset (	E = 0), there are tractable expres-
sions for the activation energies between the barrier and the
metastable basins. For a significant energy barrier ( 1

2kmx2
m 	

kBT ), the molecular activation energy is approximately
	E

‡
m ≡ Ebarrier

m (x) − Emin
m (x) ≈ 1

2kmx2
m − kBT ln 2. The sec-

ond term reflects the entropic benefit of equal accessibility to
each conformational state. When the trap minimum is halfway
between the two basins at the molecular energy barrier (the
hopping regime for single-molecule experiments), for steep
wells (2kmx2

m/[1 + ks/km] 	 1) the total activation energy

(including quadratic trap) is

	E‡ ≈
1
2kmx2

m

1 + ks
km

− kBT ln 2. (12)

We calculate the actual excess work using a dynamic
programming algorithm [29] to dynamically propagate the
nonequilibrium position distribution. To calculate the excess
power from (6b), the control parameter velocity dxs/dt is
dictated by the protocol, and the force variance 〈δf 2〉xs is
analytically solvable for this model. Previously, calculating
the force relaxation time for this type of model [30] required
numerical simulations. However, a recent advance has analyti-
cally simplified the full friction coefficient for one-dimensional
overdamped diffusive dynamics to [18,31]

ζij (λ) = 1

D

∫ ∞

−∞
dx

[
∂λi 
eq(x,λ) ∂λj 
eq(x,λ)

Peq(x,λ)

]
, (13)

requiring only the diffusion coefficient D and the cumulative
distribution function 
eq(x,λ).

We explore this model by characterizing a parameter regime
roughly corresponding to contemporary optical tweezer ex-
periments on single nucleic-acid hairpins: diffusion coeffi-
cient D = 0.44 μm2/s (dominated by the diffusivity of the
micron-sized optical bead), pulling velocity v = 100 nm/s,
distance xm = 10 nm from basin to barrier, trap stiffness ks =
0.025 − 0.4 pN/nm, and molecular barrier height β	E

‡
m =

0.625 − 10 kBT .

IV. RESULTS

A. Friction coefficient

The force autocorrelation function varies dramatically with
varying trap stiffness ks, molecular barrier height β	E

‡
m, and

trap minimum xs (Fig. 3).
The generalized friction coefficient [Fig. 4(c)] can be

decomposed [Eq. (6b)] into the force variance and the integral
force relaxation time [Figs. 4(a) and 4(b)], which are both

<δ
f(0

)δ
f(t

)>
x s
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FIG. 3. Equilibrium force autocorrelation function 〈δf (0)δf (t)〉xs

for trap minimum xs, with same variation of xs, ks, and β	E‡
m as

in Fig. 2.
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FIG. 4. (a) Force variance 〈δf 2〉xs , (b) relaxation time τ (xs), and
(c) their product, the generalized friction coefficient ζ (xs), across a
range of trap minima xs (within a curve), for varying molecular barrier
heights β	E‡

m (different curves within given sub-plot) and varying
trap stiffness ks (left to right subplots).

higher when the time-dependent trap minimum is at the
molecular energy barrier, giving an equilibrium distribution
with significant probability on either side of the barrier. Across
the range of model parameters we explored, the force variance
spans two orders of magnitude and the force relaxation time
four orders of magnitude.

The symmetric double-well potential has force variance

〈δf 2〉xs

= kBT

(
ks

1 + km
ks

+ {
kchxm sech

[
β
(
kchxmxs − 1

2	E
)]}2

)
.

(14)
The variance peaks in the transition region for trap minimum
xs = 	E/(2kchxm). Increasing βkchxm compresses the region
of large variance. Changing the energy offset 	E simply shifts
the location of the maximal variance, and thus in the rest of
this paper we set 	E = 0.

The analytic expression for the relaxation time is suf-
ficiently complicated to defy easy interpretation, but its
numerical results show a similar qualitative pattern to the
variance. Thus the friction coefficient peaks at the transition
region, where both the force variance and force relaxation time
are maximized. The peak friction coefficient value scales with
both ks and β	E

‡
m.

Far from the transition region (on either side) the total
potential is essentially quadratic with effective curvature
ks + km, minimum energy at x = (ksxs + kmxm)/(ks + km),
and hence translation velocity (∂xs/∂t)/(1 + km/ks) of the
energy minimum. Analytic solutions are available for the
position and work distributions [27]. The force variance and
relaxation time are both constant,

〈δf 2〉xs→±∞ = kBT ks

1 + km
ks

, (15a)

τ (xs → ±∞) = kBT

D(ks + km)
. (15b)

This produces a friction coefficient that is also constant far
from the barrier,

ζ (xs → ±∞) = kBT

D
(
1 + km

ks

)2 . (16)

The analysis inspiring this paper [14] was a microscopic
and dynamical generalization of “thermodynamic length”
ideas originally derived for macroscopic systems [32–34].
In Appendix A we examine the central quantities of that
framework in this tractable model system.

B. Naive protocols

Figure 5 shows the excess power for naive (constant-
velocity) protocols, calculated directly from numerical
Metropolis Monte Carlo simulations [35] that do not assume
linear response (dashed blue curves) and estimated analytically
under the linear response approximation (solid black curves).
When the molecular barrier height β	E

‡
m is lower (shallower

basins, lower subplots), the system remains closer to equi-
librium and the approximation works well, reproducing very
closely the exact excess power. Where the system is farther
from equilibrium (higher barriers, upper subplots), the expres-
sion breaks down as the excess power becomes asymmetric.
The approximation works quite well until reaching the middle
transition region, when the trap minimum (and preponderance
of the equilibrium probability distribution) crosses over to
the right basin while the nonequilibrium probability density
remains on the left side. Once the nonequilibrium density
is pulled over to the right basin, the approximation once
again captures the exact excess power. As the approximation
involves only the current trap minimum xs and its current
velocity dxs/dt , the approximation will never be accurate
where, due to the history of the control parameter protocol, the

FIG. 5. Excess power Pex as a function of control parameter xs,
calculated directly via numerical simulation (dashed blue curves) or
estimated using the control parameter velocity and the cumulative
distribution function form of the friction coefficient (solid black
curves). Dotted black horizontal lines show asymptotic excess powers
at xs = ±∞. Same variation of ks and β	E‡

m as in Fig. 2.
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FIG. 6. Control parameter velocity dxs/dt (in arbitrary units) as
a function of control parameter xs, for naive constant-velocity proto-
cols (red dashed lines) and optimal minimum-dissipation protocols
under the linear response approximation (solid black curves). Same
variation of ks and β	E‡

m as in Fig. 2.

nonequilibrium probability density is stuck in a qualitatively
distinct region of state space.

C. Optimal protocols

Under the linear response approximation, the optimal
(minimimum-dissipation) protocol proceeds such that the
excess power is constant over the entire protocol, and thus
the protocol velocity is proportional to the inverse square root

FIG. 7. Control parameter position xs as a function of time (in
arbitrary units), for naive constant-velocity protocols (red dashed
lines) and optimal minimum-dissipation protocols under the linear
response approximation (solid black curves). Same variation of ks

and β	E‡
m as in Fig. 2.

of the friction coefficient [6,14,34],

dλopt

dt
∝ ζ−1/2. (17)

Under the linear response approximation, the shape of the
optimal protocol is not a function of the allocated time interval.
A shorter optimal protocol has a higher proportionality
constant in Eq. (17) and hence produces a higher excess power,
but the relative velocities at different points in the protocol
remain unchanged.

Given the variation in friction coefficient [Fig. 4(a)], the
optimal control parameter velocity (Fig. 6) can vary by orders
of magnitude across a given protocol, leading to an optimal
protocol that differs substantially from the naive constant-
velocity protocol (Fig. 7). Where the friction coefficient varies
little (soft trap and small barrier, bottom left of Figs. 6
and 7), the optimal minimum-dissipation protocol and naive
constant-velocity protocol differ little.

FIG. 8. (a) Naive excess work, calculated from numerical simu-
lations. (b) Ratio of excess works [Eq. (17)] for the naive (constant-
velocity) and optimal (minimum-dissipation) protocols, estimated
from the linear response approximation. ks varies within a curve
and β	E‡

m varies across curves.
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Where the friction coefficient varies by orders of magnitude
across the protocol (stiff trap and large barrier, top right),
the optimal protocol proceeds rapidly when the system
relaxes quickly, far from the central transition region. Across
the transition region the optimal protocol moves slowly to
maximize the time spent in the hopping regime, giving thermal
fluctuations as much time as possible to kick the system over
the barrier without significant work input. Past the transition
region, the optimal protocol again proceeds rapidly to the end.

Integrating the excess power gives the excess work for the
entire protocol. A simple derivation (Appendix B) shows that
in the linear response regime the ratio of average excess works
in the naive and optimal protocols takes a simple form, the
ratio of the average friction coefficient to the square of the
mean square-root friction coefficient:

W naive
ex

W
opt
ex

= ζ

ζ 1/2
2 . (18)

The overbar represents an average over all control parameter
points in the protocol, g ≡ ∫

dλ g(λ)/
∫

dλ . This excess
work ratio is independent of the protocol time. Jensen’s
inequality [36] and the concavity of the square root imply
that the ratio in Eq. (18) is no less than unity. In the
examined parameter range, numerics show that this excess
work coefficient reaches as high as 2.5 (Fig. 8).

V. CONCLUSION

Using this approximate linear response framework to
predict nonequilibrium properties (the excess power) from
equilibrium properties (the generalized friction coefficient,
composed of equilibrium force variance and relaxation time),
we arrive at a picture of the qualitative nature of this
generalized friction and hence optimal driving in a potential
that is a model for many activated biomolecular processes. The
intuitive takeaway is that to minimize energy expended to drive
a system over a significant energetic barrier in a limited amount
of time and hence out of equilibrium, one should rapidly bring
the system near the barrier, then reserve most of the available
time to sit near the barrier, giving thermal fluctuations the
maximum available time to stochastically boost the system
over the barrier “for free.”

We have established in a simple model system that this
approximation is accurate for constant-velocity protocols
in a parameter regime representing single-molecule force-
extension experiments on nucleic acid hairpins. Moreover,
minimal excess work protocols, which are not in general
constant velocity in the control parameter [14], remain closer
to equilibrium than naive protocols, and thus are more likely to
match the theoretical approximations. The generalized friction
coefficient differs by orders of magnitude across even modest

free energy barriers, and hence the optimal protocols save
significant energy expenditure compared to naive ones.

Minimizing the excess work during nonequilibrium exper-
iments and simulations would yield significant benefits, as
protocols producing less excess work require fewer repetitions
to achieve a given statistical precision [5]. This study suggests
a method to do just this: initial equilibrium sampling at equally
spaced points in control parameter space to estimate the
equilibrium fluctuations and relaxation time for corresponding
control parameter values, followed by inference of an optimal
control parameter protocol [6,8,9].

F1 ATP synthase can be experimentally driven in a similar
fashion [37], where the time-varying quadratic potential is
a magnetic tweezers, and rotation of the tweezers drives F1

over a succession of energetic barriers separating its various
metastable states [4]. With sufficient separation between the
barriers, the minimum-dissipation rotational protocol is a
sequence of single-barrier optimal protocols, suggesting a
principle (that depends on the heights of energy barriers) for
efficient energy transmission from Fo to F1 subunits of ATP
synthase.
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APPENDIX A: THERMODYNAMIC DIVERGENCE
AND THERMODYNAMIC LENGTH

The Fisher information [36,38]

I(xs) ≡
〈[

∂ ln π (x|xs)

∂xs

]2〉
xs

(A1)

is proportional to the force variance 〈δf 2〉xs [6,14]. The
thermodynamic divergence,

J λi→λf
D ≡ (tf − ti)

∫ tf

ti

[
dλ(t)

dt

]2

〈δf 2〉λ(t) dt, (A2)

has a relatively simple expression for our system:

J xi
s→xf

s
D = βkch

{
ks

km

(
xf

s − x i
s

) + 2 sinh
[
βkchxm

(
xf

s − x i
s

)]
cosh

[
βkchxm

(
xf

s − x i
s

)] + cosh
[
β
(
kchxm

{
xf

s + x i
s

} − 	E
)]

}
. (A3)

The first term is proportional to the length of the integration
path and reflects the constant term in the expression for force

variance [Eq. (15a)]. For a given integration distance 	x ≡
xf

s − x i
s, the divergence is maximized when the start and end
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points are equally distant from the variance maximum, xs =
	E/(2kchxm). Like for the force variance, the energy offset
	E simply shifts the location of maximal thermodynamic
divergence.

The thermodynamic length

Lλi→λf ≡
∫ tf

ti

dλ(t)

dt

√
〈δf 2〉λ(t) dt (A4)

is a lower bound on dissipation along any protocol in a given
time interval between two thermodynamic states [6] and also
admits an analytic expression for this system:

Lxi
s→xf

s = l
(
xf

s

) − l
(
x i

s

)
, (A5a)

l(xs) ≡ tan−1 sinh β
(
kchxmxs − 1

2	E
)

√
1 + 1+ ks

km
βkmx2

m
cosh2 β

(
kchxmxs − 1

2	E
)

+
√

1 + ks
km

βkmx2
m

sinh−1 sinh β
(
kchxmxs − 1

2	E
)

√
1 + βkmx2

m

1+ ks
km

.

(A5b)

APPENDIX B: RATIO OF NAIVE AND OPTIMAL
EXCESS WORKS

In this linear response framework, the excess work is the
time integral of the friction coefficient times the square of
the control parameter velocity. When only a discrete set of N

equally spaced friction coefficients are known and a piecewise
constant-velocity protocol is applied over the total range 	λ ≡
λf − λi (for initial and final control parameter values λi and
λf , respectively), this integral is approximated by the discrete
sum over the constant-velocity segments:

Wex =
∫

dt

(
dλ

dt

)2

ζ [λ(t)] (B1a)

≈
∑

j

	tj

(
dλ

dt

∣∣∣∣
tj

)2

ζ
[
λ(tj )

]
(B1b)

=
∑

j

	λ
N

dλ
dt

∣∣
tj

(
dλ

dt

∣∣∣∣
tj

)2

ζj (B1c)

= 	λ

N

∑
j

dλ

dt

∣∣∣∣
tj

ζj . (B1d)

For the naive protocol, the control parameter velocity is
constant and hence the excess work is proportional to the
average friction coefficient:

W naive
ex = (	λ)2

N	t

∑
j

ζj = (	λ)2

	t
ζ . (B2)

For the optimal protocol, whose control parameter veloc-
ity dλopt/dt is proportional to the inverse square root of
the friction coefficient, the proportionality constant A is
found by requiring that the protocol traverse 	λ in allotted
time 	t :

	t =
∑

j

	λ
N

dλopt

dt

∣∣
tj

(B3a)

=
∑

j

	λ
N

Aζ
−1/2
i

(B3b)

= 	λ

A

∑
i ζ

1/2
i

N
(B3c)

= 	λ

A
ζ 1/2, (B3d)

A = 	λ

	t
ζ 1/2. (B3e)

Thus the optimal protocol requires average excess work

W opt
ex = 	λ

N

∑
i

(
Aζ

−1/2
i

)
ζi (B4a)

= (	λ)2

N	t
ζ 1/2

∑
i

ζ
1/2
i (B4b)

= (	λ)2

	t
ζ 1/2

2
, (B4c)

proportional to the square of the mean square root friction
coefficient. The ratio of naive and optimal excess works
cancels the identical prefactors (	λ)2/	t , leaving

W naive
ex

W
opt
ex

= ζ

ζ 1/2
2 . (B5)
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