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Common algorithms for computationally simulating Langevin dynamics must discretize the stochastic

differential equations of motion. These resulting finite-time-step integrators necessarily have several

practical issues in common: Microscopic reversibility is violated, the sampled stationary distribution

differs from the desired equilibrium distribution, and the work accumulated in nonequilibrium simulations

is not directly usable in estimators based on nonequilibrium work theorems. Here, we show that, even with

a time-independent Hamiltonian, finite-time-step Langevin integrators can be thought of as a driven,

nonequilibrium physical process. Once an appropriate worklike quantity is defined—here called the

shadow work—recently developed nonequilibrium fluctuation theorems can be used to measure or correct

for the errors introduced by the use of finite time steps. In particular, we demonstrate that amending

estimators based on nonequilibrium work theorems to include this shadow work removes the time-step-

dependent error from estimates of free energies. We also quantify, for the first time, the magnitude of

deviations between the sampled stationary distribution and the desired equilibrium distribution for

equilibrium Langevin simulations of solvated systems of varying sizes. While these deviations can be

large, they can be eliminated altogether by Metropolization or greatly diminished by small reductions in

the time step. Through this connection with driven processes, further developments in nonequilibrium

fluctuation theorems can provide additional analytical tools for dealing with errors in finite-time-step

integrators.

DOI: 10.1103/PhysRevX.3.011007 Subject Areas: Chemical Physics, Computational Physics,

Statistical Physics, Soft Matter

I. INTRODUCTION

In the computational natural sciences, dynamic proper-
ties of a stochastic system are often calculated using simple
numerical integrators for Langevin dynamics [1],

dr ¼ vdt; (1a)

dv ¼ fðtÞ
m

dt� �vdtþ
ffiffiffiffiffiffiffiffi
2�

�m

s
dWðtÞ; (1b)

where the system is driven from equilibrium by a time-
dependent Hamiltonian H ðtÞ. In the simplest case of a
single stochastic particle, r and v are time-dependent
position and velocity, m is mass, f is force, � ¼ 1=kBT,
kB is Boltzmann’s constant, T is the temperature of the
environment, � is a friction coefficient (with dimensions of

inverse time), and WðtÞ is a standard Wiener process. The
force is determined by the derivative of the potential
energy, f � �@H =@r. For multidimensional, multipar-
ticle systems, r, v, f, and dW are vectors, and m is a
diagonal matrix.
In order to simulate Langevin dynamics on a digital

computer, it is necessary to adopt some approximate algo-
rithm that divides time into discrete steps [2]. However,
most such schemes have an inherent problem: Even with a
time-independent Hamiltonian, they do not preserve the
canonical equilibrium distribution determined by H nor
do they satisfy microscopic reversibility. (By reversibility
we mean that the probability of sampling a particular
trajectory starting from equilibrium is equal to the proba-
bility of sampling the trajectory’s time reversal, reversing
velocities if necessary.) We show that these pathologies
arise because discrete-time-step integrators of Langevin
dynamics can be viewed as simulations of artificial driven
nonequilibrium dynamics. This perspective has the advan-
tage that the complications generated by this unwanted but
inevitable breaking of time-reversal symmetry can be
understood, and remedied in a controlled and systematic
fashion, with insights from nonequilibrium statistical ther-
modynamics [3–6].
We can appreciate some of the problems inherent in

finite-time-step Langevin dynamics by first considering
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the zero-friction limit, � ¼ 0, with a time-independent
Hamiltonian, where Langevin dynamics reduces to deter-
ministic Newtonian dynamics. A simple, popular integra-
tor for Newtonian dynamics is the velocity Verlet
algorithm [7,8],

v
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¼ vðnÞ þ �t
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fðnÞ
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; (2a)
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Because of the finite time step, the trajectories generated
by this algorithm are inaccurate: They do not faithfully
follow the precepts of Newtonian mechanics. Also, the
actual energy of the system is not conserved, but rather it
fluctuates from one time step to the next. However, the
velocity Verlet integration scheme is symplectic (in that the
Jacobian of the transformation from old to new positions
and velocities is unity, and therefore the phase-space vol-
ume is conserved [9]), which ameliorates some problems
due to the finite time step. For example, although a finite-
time-step symplectic integrator does not conserve the en-
ergy of the system Hamiltonian, it does conserve the
energy of a shadow Hamiltonian, which is close to the
desired Hamiltonian if the time step is not too large [2,10].
For sufficiently small time steps, this conservation of the
shadow Hamiltonian prevents long-term drift in the system
Hamiltonian over the duration of the simulation.

Essentially, a finite-time-step dynamics performswork on
the system, over and above any work due to intentional
perturbations from a time-dependent Hamiltonian [6]. We
can imagine this finite-time-step integration scheme in the
following way. At the beginning of each time step, we first
perturb the system Hamiltonian such that it becomes the
shadow Hamiltonian, changing the energy of the system.
The symplectic integrator then updates the position and
velocity [Eq. (2)], perfectly preserving the shadow energy
of the shadowHamiltonian.We then switch theHamiltonian
back to the original one, again perturbing the energy. The net
change in the energy of the system during this time step is
due towork performed on the system by perturbing back and
forth between the system and shadow Hamiltonian. We can
determine this shadowwork (also knownas errorwork [6] or
an effective energy change [11]) during each time step by
measuring the difference in energy using the system
Hamiltonian, so we do not need to know the form of the
shadowHamiltonian. This shadowwork is distinct from any
protocol work applied to the system due to explicit, time-
dependent perturbations of the system Hamiltonian. Note
that Markov-chain Monte Carlo (MCMC) simulations do
not generate shadow work [12] because the dynamics sat-
isfies detailed balance explicitly, which ensures that the
trajectories are microscopically reversible [13] and that the

appropriate equilibrium ensemble is preserved for a time-
independent Hamiltonian [2].
Discretizations of continuous-time Langevin dynamics

are essentially a combination of deterministic and stochas-
tic dynamics, and, as a result, they suffer from a combina-
tion of problems. With a finite time step, the deterministic
parts of the dynamics tend to pump energy into the system in
the form of shadow work, driving the system away from
equilibrium, whereas the stochastic parts of the dynamics
relax the velocities back toward the equilibrium Maxwell-
Boltzmann distribution, removing energy from the system
in the form of heat. It follows that, even for a system with a
Hamiltonian that is explicitly time independent, a finite-
time-step Langevin dynamics has an effective Hamiltonian
alternating between the systemHamiltonian and the shadow
Hamiltonian, and thus actually simulates a driven, nonequi-
librium system, with a net energy flow. Microscopic time-
reversal symmetry is broken, and in general we cannot
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FIG. 1. Time line for theLangevin integrator (3). The part labels
(a)–(g) correspond to the substeps of Eq. (3). The stochastic
substep (3a) randomizes the velocity, transferring heat between
the system and environment, while the Hamiltonian is fixed and
the position unchanged. We then switch from the system to the
shadow Hamiltonian, performing shadow work on the system.
Substeps (3b) and (3c) update the velocity and then the position
according to the symplectic dynamics of the shadowHamiltonian,
exactly conserving the energy. We next switch back to the system
Hamiltonian (performing shadow work), and in (3d) update the
system Hamiltonian from H ðnÞ to H ðnþ 1Þ, according to
the prescribed protocol �. This action performs protocol work
on the system. We switch back to the shadow Hamiltonian (doing
shadow work), symplectically update position and then velocity
(3e) and (3f), and then restore the system Hamiltonian (again
performing shadow work). Finally, we conclude with another
velocity-randomization substep (3g).
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determine the steady-state, nonequilibrium distribution.
These difficulties may be circumvented by reducing the
time step but at the cost of increasing the computational
effort required to simulate the same interval of time; this is
hardly a satisfactory resolution of the problem.

The main point of this paper is this interpretation of the
errors induced by discrete simulation of Langevin dynam-
ics in terms of a driven thermodynamic process. This
perspective forms a bridge between the study of numerical
integrators and the rapidly expanding field of nonequilib-
rium statistical mechanics, permitting the invocation of a
wide array of nonequilibrium work-fluctuation relations to
characterize and correct for biases in estimates of equilib-
rium and nonequilibrium thermodynamic quantities.

II. CONCRETE INTEGRATOR

We demonstrate the utility of this perspective for an
integration scheme that is explicitly time symmetric, that
cleanly separates the stochastic and deterministic parts of
the dynamics, and for which the deterministic parts are
symplectic and the stochastic parts are detailed balanced.
This construction allows a clean separation of the system’s
energy change into work, shadow work, and heat, simplify-
ing our analysis in terms of a driven nonequilibrium process.
Fortunately, integrators with these properties have received
recent attention [4,5,14–16]. As a concrete example, we
consider the integrator used by Bussi and Parrinello [11],
where we make the Hamiltonian update explicit:
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Here, �t is the time step by which the simulation clock is
advanced, fðnÞ is the force at position rðnÞ due to the
Hamiltonian H ðnÞ, a ¼ expð���tÞ, and N þ and N �
are independent, normally distributed random variables
with zero mean and unit variance (hence, when scaled by

ð�mÞ�1=2, distributed according to the equilibrium
Maxwell-Boltzmann velocity distribution). The first and
last substeps (3a) and (3g), are stochastic, Markovian, and
detailed-balanced (with respect to the canonical measure)
velocity randomizations, which leave the position

unchanged. The five middle substeps (3b)–(3f) constitute
the deterministic velocity Verlet integrator (2), with the
midpoint Hamiltonian update made explicit. The order of
substeps and the effective Hamiltonian switches are illus-
trated in Fig. 1. Note that the deterministic substeps (3b),
(3c), (3e), and (3f) are each individually symplectic.

III. NONEQUILIBRIUM THERMODYNAMICS

A central relation of driven, nonequilibrium thermody-
namics [17–20] relates the microscopic irreversibility of
trajectories to the work W½X;�� performed on the system
during the forward protocol [21–23]:

ln
P½Xj��
P½ ~Xj~�� ¼ �W½X;�� � ��Feq½��: (4)

Here, X is a trajectory through phase space between time 0
and N�t,� represents a protocol for perturbing the system
(typically through the time dependence of the system
Hamiltonian), �Feq½�� is the difference in free energy

between the equilibrium distributions for the initial and
final values of the system Hamiltonian, and P½Xj�� is the
probability of the trajectory, given the protocol and an
initial equilibrium ensemble. The time-reversed protocol
~� (time-reversed trajectory ~X) retraces the same series of
perturbations (phase-space transitions) as the forward pro-
tocol � (forward trajectory X), but under time inversion
and hence in reverse. Subject to a protocol, a driven system
is microscopically reversible if the probability of a trajec-
tory and its time reversal are identical, and therefore the
work imposed by the protocol equals the change in free
energy [24].
It is straightforward to extend this fluctuation theorem to

mixed stochastic-deterministic dynamics, such as the
Langevin integrator, Eq. (3), provided that the individual
substeps satisfy this symmetry. It is for this reason that we
insist on a clean separation of the deterministic and sto-
chastic substeps.

The total work W ¼ P
nW

ðnÞ is the sum of the contribu-

tions WðnÞ from individual steps. The total change in en-
ergy �E during the step n ! nþ 1 can be cleanly
separated into heat Q, protocol work Wprot, and shadow

work Wshad:

�E ¼ QþW

¼ QþWprot þWshad; (5a)

Q ¼ �Ea þ �Eg; (5b)

Wprot ¼ �Ed; (5c)

Wshad ¼ �Eb þ �Ec þ �Ee þ�Ef: (5d)

Here, �Ea–g are the energy changes during the corre-

sponding substeps of Eq. (3). Heat is the energy exchanged
with the thermal environment, protocol work is the energy
change due to deliberate manipulation of the Hamiltonian
(i.e., the explicit time dependence of the system
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Hamiltonian), and shadow work is the energy change due
to alternation between the system and shadow
Hamiltonians, resulting from the finite time step of the
symplectic part of the integrator. The essential distinction
between heat and work is that heat flow is change of the
system energy due to change in the current distribution
over microstates, whereas work is change of energy due to
change in the equilibrium distribution over microstates.

The stochastic velocity randomization substeps obey
Eq. (4) since they are balanced, in that they preserve the
canonical equilibrium distribution [21]. The set of deter-
ministic velocity Verlet substeps also obeys Eq. (4), so long
as the total work includes the shadow work [3,6], since the
dynamics is symplectic and microscopically reversible
with respect to the shadow Hamiltonian [2,10]. Since
both the deterministic and stochastic substeps are
Markovian, it follows that we can safely intermix the two
dynamics, and (4) still holds.

It therefore follows that the Langevin integrator obeys
various derived relations of nonequilibrium statistical dy-
namics, such as the Jarzynski equality [25], fluctuation
relations [21,26], interrelations between path ensemble
averages [22,27] and various interrelations between dissi-
pation and time asymmetry [28–31]. Furthermore, by its
separation of protocol work and shadow work, the
Langevin integrator permits the separation of the respec-
tive contributions to microscopic irreversibility of deliber-
ate perturbation (physically meaningful) and the finite time
step (a discretization artifact). Notably, the statistics of the
protocol work alone systematically deviate from those of
the total work, and hence lead to biased inference when
using the machinery of nonequilibrium thermodynamics.
In Secs. VI and VII, we explicitly demonstrate this under-
appreciated point.

IV. ‘‘EQUILIBRIUM’’ SIMULATIONS SAMPLE
PERTURBED DISTRIBUTIONS

It is common practice in the study of the equilibrium
properties of molecular systems to use a single finite-
time-step mixed stochastic and deterministic dynamical
simulation to sample from an equilibrium distribution.
However, this distribution departs from the true equilib-
rium distribution for the system Hamiltonian, a distribu-
tion that we can now understand as the steady state due to
driving by the finite time step. Thus a question of sig-
nificant practical interest presents itself: How far from
equilibrium is the effective nonequilibrium steady state
induced by this time discretization for a system with a
time-independent Hamiltonian? Since the explicit system
Hamiltonian is unchanging, no protocol work is per-
formed, and thus our analysis in this section focuses on
the shadow work alone. Practitioners commonly estimate
artifactual errors by monitoring some essentially arbi-
trary, yet easily measured, observable of the system,
such as the total energy. However, we can exploit recent

advances in nonequilibrium statistical dynamics to pro-
vide a principled characterization of how far the system
is driven from equilibrium [32].
The natural measure of this instantaneous distance that

the system has been driven away from equilibrium is the
difference between a nonequilibrium free energy [33,34]
Fneq � hEi � TS and the corresponding equilibrium free

energy Feq for the given Hamiltonian H . If the

Hamiltonian were held constant and the (previously
driven) system were allowed to relax to equilibrium, this
deviation from the equilibrium free energy would represent
the heat that would be lost to the environment, or equiv-
alently the maximum work that could be imparted to a
mechanically coupled system. For the perturbations im-
posed by the discrete dynamics, this nonequilibrium free-
energy deviation is approximated near equilibrium by [32]

�Fneq � Fneq � Feq � 1
2½hWshadi � ðtf � tiÞP ss�; (6)

whereWshad is the shadow work over the whole simulation,
P ss is the power (work per unit of time) once transients
have died off and the system has settled into a nonequilib-
rium steady state, and tf � ti is the total simulation time.
Normalizing this nonequilibrium free-energy deviation by
the size of the system (number of degrees of freedom)
provides a natural measure of how far from equilibrium
each degree of freedom is on average.
To estimate the nonequilibrium steady-state free-energy

deviation for a molecular system, we simulate cubic boxes
of TIP3P waters of various sizes, both with and without
constraints on the water O-H and H-H interatomic dis-
tances. (See the Appendix for simulation details.) Initial
coordinates and momenta are sampled from equilibrium in
an isothermal-isobaric (NPT) ensemble (that is, an
ensemble that maintains constant number of particles,
constant pressure, and constant temperature) at 1 atm and
298 K using the generalized hybrid Monte Carlo (GHMC)
integrator [16,35]. These initial conditions are simulated
for M steps with the Langevin integrator [Eq. (3)] at
constant volume (using a collision rate � ¼ 9:1=ps) to
measure the nonequilibrium work to reach steady state,
followed by an additional M steps to measure the steady-
state power. We have determined that, for all systems and
time steps simulated,M ¼ 1028 steps is sufficient to reach
steady state (see Fig. 4). We have also calculated the
associated statistical uncertainty according to Eq. (A2).
Because the system (a periodic water box) is homoge-

neous, it is possible to collapse all system sizes onto
universal curves describing the nonequilibrium free-energy
deviation per molecule as a function of time step for
unconstrained and constrained systems, respectively
(Fig. 2). For the unconstrained system, whose numerical
integration becomes unstable beyond�t ¼ 1:5 fs, the non-
equilibrium free-energy deviation �Fneq rapidly rises as

the time step surpasses the typical time step employed for
flexible systems, �t � 1 fs. For a system of 220 waters,
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for example, �Fneq ¼ 11:4� 0:2kBT at �t ¼ 1 fs. For

constrained water boxes, however, �Fneq reaches this

magnitude only at large time steps—here, �t � 5 fs, not
far from the stability limit at 6 fs and well beyond 2 fs, the
standard time step for biomolecular simulations.

Empirically, the nonequilibrium free-energy deviation
(�Fneq) for both unconstrained and constrained systems

appears to show a quartic dependence on the time step �t
(Fig. 2, gray curves), such that

�Fneq=NH2OkBT � a�t4; (7)

where the prefactor a depends strongly on whether con-
straints are employed; see the caption of Fig. 2. This trend
is consistent with earlier work observing the strong depen-
dence of Metropolization acceptance probabilities on time
step [36] and highlights how small reductions in time
step can rapidly reduce the deviations of the sampled
steady-state distribution from the desired equilibrium dis-
tribution defined by the system Hamiltonian peqðxÞ /
exp½��H ðxÞ�, without unduly burdensome computa-
tional cost. We detail in Sec. VI some methods that correct
for these nonequilibrium perturbations. Even in the
absence of correction procedures, the above calculation
represents a thermodynamically meaningful determination
of the deviation from the desired equilibrium sampling
associated with the continuous Langevin equation of mo-
tion, as a function of simulation parameters.

V. MULTIVARIATE FLUCTUATION THEOREM

We seek an analytical framework that describes the
correlation between the shadow work (performed by inte-
gration) and the protocol work (due to explicit Hamiltonian
changes). We want this framework to provide a generic
method to characterize the effect that shadow work has on
the distribution of protocol work, and specifically on the
time-reversal symmetry [Eq. (4)] that protocol work would
satisfy in its absence. Furthermore, we want this frame-
work to suggest systematic techniques to correct for these
distorting effects. We propose such a framework through
the generalization of work-fluctuation theorems to the
context of two sources of work. These results, although
formulated specifically for our situation of explicit and
artifactual work, are entirely general to situations involving
any two sources of work.
Rearrangement of Eq. (4) and splitting the work into two

distinct work contributions W1, W2 gives

P½Xj�� ¼ P½ ~Xj~��e�fW1½X;��þW2½X;����Feq½�� g: (8)

Multiplication by delta functions of the two works,
�ðW1½X;�� �WprotÞ�ðW2½X;�� �WshadÞ, and integration

over all trajectories produces what we refer to as the multi-
variate fluctuation theorem:

P�ðWprot; WshadÞ
P~�ð�Wprot;�WshadÞ ¼ e�ðWprotþWshad��FeqÞ: (9)

This is a special case of the generalized detailed fluctuation
theorem for joint probabilities of Garcı̀a-Garcı̀a et al.
[37,38]. Equation (9) gives an expression in terms of the
excess work Wprot þWshad � �Feq for the ratio of the

joint-probability distributions over protocol and shadow
works realized during the forward and reverse protocols,
respectively.
Equation (9) can be trivially extended to arbitrary de-

compositions of the total work, where each component
corresponds to a group of individual work steps. It thus
represents a generalization of the work-fluctuation theorem
[22] to contexts with multiple sources of work. Several
other modified fluctuation theorems can be derived from
Eq. (9) that modify a standard fluctuation theorem for one
of the works with an exponential average over the other
work. For example, in Sec. VI, we derive a Jarzynski
equation modified by the presence of shadow work
[Eq. (12)], and, in Sec. VII, we derive a similarly modified
integrated transient fluctuation theorem (ITFT) [Eq. (15)].

VI. RECOVERING EQUILIBRIUM STATISTICS
FROM NONEQUILIBRIUM SIMULATIONS

Now that we are equipped with our new interpretation of
finite-time-step Langevin dynamics as a driven nonequi-
librium process even in the absence of an explicit driving
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FIG. 2. Nonequilibrium free-energy deviation for boxes of
TIP3P water, normalized by number of waters.
Nonequilibrium free energies for various system sizes (220 to
3520 TIP3P waters) are shown for both unconstrained (left
curve) and constrained (right curve) simulations, normalized
by the number NH2O of waters in the system and the thermal

energy kBT. Error bars show 95% confidence intervals.
Gray lines show empirical fits of the form a�t4, with
a ¼ 1:23� 10�2 fs�4 for unconstrained simulations and a ¼
9:97� 10�6 fs�4 for constrained simulations.

USING NONEQUILIBRIUM FLUCTUATION THEOREMS TO . . . PHYS. REV. X 3, 011007 (2013)

011007-5



force, nonequilibrium thermodynamics affords various
approaches for recovering true equilibrium properties of
the system.

One approach is to maintain the simulation at equilib-
rium by incorporating Monte Carlo moves that condition-
ally accept or reject candidate trajectory segments or single
time steps, for example, by using the Metropolis criterion
Paccept ¼ minð1; expf��WshadgÞ [39]. In order to maintain

detailed balance, the velocity must be inverted if the

proposed state is rejected [12], which may lead to in-
creased correlation times. Applied to single time steps,
this is essentially the idea behind the generalized hybrid
Monte Carlo (GHMC integrator [12,35], and when applied
to trajectory segments, this is the idea behind work-bias
Monte Carlo [40] and nonequilibrium-candidate Monte–
Carlo [41] simulations. In either case, Metropolization
results in an MCMC process that samples the true equilib-
rium distribution.
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moved to r ¼ 2:5, as a function of time-step length, neglecting shadow work (circles) and including shadow work (� s). Also shown is
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to r ¼ 2:5, as a function of time-step length �t, neglecting shadow work (circles) and including shadow work (� s). Also shown is the
correction factor he��Wtot iWprot>0=he��Wprot iWprot>0 (þ signs).
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Another approach to recovering equilibrium statistics is
to perform a Monte Carlo sampling of trajectories [42,43],
generating an ensemble of trajectories based on the proba-
bility associated with the Boltzmann-weighted work over
the entire trajectory, expf��Wshadg. This approach allows
both accurate equilibrium statistics and realistic dynamics,
albeit at a potentially high computational cost.

Instead of sampling equilibrium trajectories, we can
alternatively apply nonequilibrium relations, such as the
Jarzynski equality [25] and path ensemble averages
[22,27,44,45], to directly recover equilibrium properties
from the statistics of a driven system, essentially by re-
weighting trajectories by expf��Wtotg, where it is impor-
tant that the work includes both the protocol work and the
shadow work. Note that the initial configurations must be
sampled from the correct equilibrium ensemble, which can
be accomplished with a standard MCMC process, or with
one of the approaches discussed above, such as generalized
hybrid Monte Carlo.

We now demonstrate the importance of including the
shadow work by using the Jarzynski equality to estimate
changes in free energy in a simple model system. The
Jarzynski equality [25] relates the change in equilibrium
free energy, resulting from some perturbation of the sys-
tem, to the exponential average of the work incurred
during many realizations of the system response to that
perturbation,

��Feq ¼ � lnhe��Wi� (10a)

¼ � lnhe��ðWprotþWshadÞi�: (10b)

In the second line, we have explicitly split the effective
thermodynamic work into protocol and shadow work.
Here, angled brackets with subscript � indicate expecta-
tions over trajectories starting in the equilibrium distribu-
tion for the initial value of the Hamiltonian H ð0Þ and
integrated according to Eq. (3), with the Hamiltonian
evolving according to �. Although standard Langevin
integrators are used in myriad multidimensional contexts,
in Fig. 3 we examine the shadow-work contribution in a
simple one-dimensional system to suggest the ubiquity of
the issues raised here. In particular, we consider a particle
in thermal contact with the environment, subject to a
quartic potential that is initially stationary and then trans-
lated at a constant velocity. The exact change in free energy
is zero. When one uses only the protocol work (neglecting
the shadow work), the Jarzynski estimate of free energy
empirically shows a systematic error that scales roughly as
�t2 [Figs. 3(a) and 3(b), circles]. Using the total thermo-
dynamic work (including the shadow work) eliminates this
error, and the Jarzynski estimator gives the correct change
of free energy [Figs. 3(a) and 3(b),�s]. In Fig. 3, standard
errors are calculated from 108 independent simulations and
are smaller than the symbol size.

We can understand the origin of this error by analyzing
our estimator in terms of the multivariate-fluctuation

theorem [Eq. (9)] derived above in Sec. V. Rearranging
Eq. (9), decomposing the joint probability into the mar-
ginal and conditional probabilities,

P~�ð�Wprot;�WshadÞ ¼ P~�ð�WprotÞP~�ð�Wshadj �WprotÞ;
(11)

and integrating over the shadow work, we find that, when
ignoring the contributions of shadow work, the Jarzynski

estimator of the free energy �d�Feq � � lnhe��Wproti� has

a systematic bias from the true change in free energy
��Feq that is a function of the distribution of shadow

works:

�d�Feq ¼ ��Feq � lnhe��Wshadi~�: (12)

Empirically, the correction term� lnhe��Wshadi~� [Figs. 3(a)

and 3(b), þ signs] reproduces the error in the Jarzynski

estimator without shadow work, �d�Feq.

The correction factor � � he��Wshadi~� is analogous to

the correction factor that appears in the Jarzynski equality
with feedback [46]. Curiously, the correction to the
Jarzynski estimator is solely a function of the shadow-
work distribution, and, in particular, does not explicitly
depend on correlations between the shadow work and the
protocol work.

VII. CORRECTING NONEQUILIBRIUM
FLUCTUATION THEOREMS

In addition to these errors for equilibrium estimators
during simulations with an explicitly time-independent
Hamiltonian, ignoring the contribution of shadow work
leads to systematic errors in estimates of nonequilibrium
quantities when the Hamiltonian is explicitly time depen-
dent: The simulated system is actually subject to a different
Hamiltonian than the system one, and thus the probability
distribution of protocol works does not obey the relevant
time-reversal symmetry (4). We quantitate this time-
reversal asymmetry by examining violations of the ITFT
[47], which for time-symmetric protocols relates the ratio
of the probabilities of realizing a negative and a positive
total work, respectively, to the exponentially weighted total
work, conditional on the total work’s being positive:

PðWtot < 0Þ
PðWtot > 0Þ ¼ he��WtotiWtot>0: (13)

This relation follows directly from Eq. (4).
Manipulating Eq. (9) to a similar form produces

PðWprot < 0Þ
PðWprot > 0Þ ¼ he��WtotiWprot>0: (14)

For this relation to hold, the work in the exponential
must be the total work, not the protocol work that appears
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elsewhere in the equation. When one ignores the shadow
work and measures only the protocol work, the ratio of the
left-hand side and right-hand side,

PðWprot < 0Þ
PðWprot > 0Þ

�
he��WprotiWprot>0; (15)

departs from unity to the extent that the protocol-work
fluctuations do not obey the relevant time-reversal symme-
try that the total-work fluctuations do. Departure
from unity in Eq. (15) quantifies the violation of the
nonequilibrium time-reversal symmetry obeyed by a
proper thermodynamic work encompassing all energy
changes unrelated to the heat.

Figures 3(c) and 3(d) show that, for the simple system
described in Sec. VI, the protocol work alone (circles) does
not obey the nonequilibrium fluctuation relation required
of a thermodynamic work (with an error that empirically
scales with the square of the time step), but the sum of the
protocol and shadow works (� s) does obey it. The cor-
rection factor he��WtotiWprot>0=he��WprotiWprot>0 (þ signs)

reproduces the error in the ITFT ratio neglecting shadow
work. Thus, ignoring the shadow work and using the pro-
tocol work rather than the total work produces systematic
biases in estimators of nonequilibrium quantities (such as
the nonequilibrium free energy [32] or the nonequilibrium
energetic efficiency [48]).

VIII. EPILOGUE

For Hamiltonian dynamics, a finite-time-step symplec-
tic integrator conserves a shadow Hamiltonian and is
microscopically reversible. But, as we have seen, for
Langevin dynamics, discretization of the dynamics leads
(even for a time-independent Hamiltonian) to a mixed
deterministic-stochastic nonequilibrium dynamics, which
preserves the equilibrium distribution of neither the sys-
tem nor the shadow Hamiltonian and which is not time-
reversal symmetric. However, we can measure the work,
heat, and shadow work, and thereby separate the respec-
tive contributions to time-reversal symmetry breaking of
the finite time step and deliberate perturbation. This
procedure allows us to apply results from nonequilibrium
thermodynamics to characterize in a thermodynamically
meaningful way the error produced by finite-time-
step integration and to correct for such errors to recover
equilibrium and nonequilibrium properties of the
system.

While we focus in this paper on work distributions, we
note that discrete integrators can also introduce artifacts
into other aspects of a system’s dynamical evolution, for
example, producing erroneous free-particle diffusion co-
efficients and uniform force-field terminal drifts. These
artifacts can be mitigated through time-step rescaling, as
discussed in Ref. [49]. Where measurements of work and
heat are not required, correct statistics of nonequilibrium

trajectories through phase space can be recovered using
the Metropolis-adjusted geometric Langevin algorithm of
Bou-Rabee and Vanden-Eijnden, which under reasonable
conditions on the potential energy is pathwise convergent
to the distribution of trajectories for the continuous
equations of motion [50].
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APPENDIX: SIMULATION DETAILS

We carried out simulations using the OpenMM GPU-
accelerated molecular-simulation toolkit [51,52] (develop-
ment revision r3314). Cubic water boxes of various sizes
(220, 440, 880, 1760, and 3520 waters) were created using
the OpenMM Modeller tool and parametrized with TIP3P
water [53] using the OpenMM Forcefield tool. In con-
strained simulations, we used the analytical SETTLE algo-
rithm [54] to enforce the constraints on water O-H and H-H
interatomic distances. This Langevin integrator maintains
second-order accuracy [16] when constrained by the
RATTLE algorithm [55], which should produce results iden-

tical (to within machine precision) to SETTLE. We truncated
Lennard-Jones interactions at 9 Å and added an analytical
long-range dispersion correction [56] to account for inter-
actions beyond this cutoff. We handled electrostatics using
the reaction-field algorithm [57] with an identical cutoff
using an exterior dielectric of 78.5.
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We sampled initial configurations and momenta from an
equilibrium NPT ensemble at 1 atm and 298 K with the
generalized hybrid Monte Carlo (GHMC algorithm [16,35]
using a time step of 0.5 fs. We controlled pressure using a
Monte Carlo molecular-scaling barostat with a proposal
size automatically determined during equilibration
[58,59]. After initial equilibration for 250 000 steps, we
sampled configurations and momenta every 10 000 GHMC
steps and subjected them to Langevin simulation [Eq. (3)]
at fixed volume using a collision rate of 9:1=ps. We inte-
grated these initial conditions for a total of 4096 steps
using a variety of different time steps from 0.25 fs to
7 fs, with the accumulated shadow work after 2n steps
stored (n ¼ 0; 1; . . . ; 12). The limit of stability was deter-
mined by the largest time step that did not generate infinite
cumulative work values in 4096 time steps in any sample;
the limit was determined to be 2 fs for unconstrained
simulations and 6 fs for constrained simulations.

To estimate, using Eq. (6), the nonequilibrium free
energy of the steady-state ensemble sampled by discrete
Langevin integration, we used the average accumulated
shadow work after M steps as the work to switch into
steady state, while we used the average dissipated power
in the next M steps as an average steady-state power:

�Fneq ¼ 1
2½hW0!MiGHMC � hWM!2MiGHMC�: (A1)

Here, the h�iGHMC notation denotes averages computed
over Langevin simulations initiated from GHMC-sampled
initial configurations and momenta. Through analysis of
M ¼ 2n for n ¼ 0; 1; . . . ; 11, we found that the steady-state
power, and hence the estimated nonequilibrium free en-
ergy, converged after M ¼ 1024 steps (see Fig. 4), so we
used this value for all subsequent analysis.
We estimated the squared uncertainty in the nonequilib-

rium free energy as
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FIG. 4. Convergence to steady state of Langevin simulations with a time-independent Hamiltonian. Shadow work accumulates at a
steady rate after M ¼ 1024 steps. Each dashed line connects work values at 1024 and 2048 steps. According to Eq. (A1), the
nonequilibrium free energy is estimated as half the y intercept of the dotted line. Left column: unconstrained simulations; right
column: constrained simulations. Top row: 220 water molecules; bottom row: 3520 water molecules. Each simulation ran for 4096
steps. Error bars denote 95% confidence intervals.

USING NONEQUILIBRIUM FLUCTUATION THEOREMS TO . . . PHYS. REV. X 3, 011007 (2013)

011007-9



�2ð�FneqÞ ¼ ½varðW0!MÞ þ varðWM!2MÞ
� 2covðW0!M;WM!2MÞ�=ð4NeffÞ; (A2)

where varðxÞ and covðx; yÞ denote sample variances and
covariances over the measured set of work values, and Neff

is the effective number of uncorrelated samples after ac-
counting for the statistical inefficiencies by autocorrelation
analysis of sequentially sampled trajectory work values.
(See Sec. 2.4 of Ref. [60].)
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