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For a native gate set which includes all single-qubit gates, we apply results from symplectic
geometry to analyze the spaces of two-qubit programs accessible within a fixed number of gates.
These techniques yield an explicit description of this subspace as a convex polytope, presented by
a family of linear inequalities themselves accessible via a finite calculation. We completely describe
this family of inequalities in a variety of familiar example cases, and as a consequence we highlight
a certain member of the “XY–family” for which this subspace is particularly large, i.e., for which
many two-qubit programs admit expression as low-depth circuits.

I. INTRODUCTION

Compilers for quantum computers have two primary
tasks. One is to convert a hardware-agnostic description
of an algorithm to a hardware-aware description suitable
for execution on a particular physical device. This is an
involved process, owing both to the idiosyncratic limita-
tions of quantum computational devices and to the ex-
tremely large space of quantum programs. Ideal, “pure”
quantum programs, which do not interact with the out-
side world until termination, can be interpreted as points
in the projective unitary group PU(2q) (i.e., unitaries ne-
glecting the effects of global phase), where q is the num-
ber of qubits in the system. For all positive values of q,
PU(2q) is an infinite group, and so quantum compilers
must draw on methods from continuous mathematics to
accomplish their task. Optimized expression of a pro-
gram, a compiler’s second task, is of particular interest
to programmers of quantum devices which do not yet en-
joy fault tolerance. If each instruction has the potential
to introduce error into the computation, then after suf-
ficiently many instructions are enacted, the state of the
quantum device will no longer even approximate the pro-
grammer’s intent. Correspondingly, optimization passes
in a quantum compiler which lower circuit depth provide
a form of noise mitigation, and hence they contribute not
just to expedience but to correctness.

In light of this observation, optimality results for de-
compositions are of interest to quantum compiler de-
signers, and, in the presence of recursive or “trampolin-
ing” compilation schemes, such results for low numbers
of qubits are particularly interesting. Some of the most
advanced such results to date include: Shende, Bullock,
and Markov [1] showed (using an earlier framework, see
e.g. [2]) that all two-qubit programs can be expressed us-
ing three applications of the CZ–gate, interleaved with
single-qubit rotations; Zhang, Vala, Sastry, and Wha-
ley [3] showed that all two-qubit programs can be ex-
pressed using two applications of the B–gate, interleaved
with single-qubit rotations; and the same group showed
that a wide class of exponential families of two-qubit
gates can be used to implement an arbitrary two-qubit
program, using three applications interleaved with single-
qubit rotations [4].

This first set of results has two particularly interest-

ing features. First, the methods they describe are com-
putationally tractable: one can actually construct their
circuits by using standard algorithms in linear algebra.
Second, they use the same techniques in a follow-up pa-
per [5] to analyze the subspace of programs which take
no more than two CNOTs to implement, and they con-
clude that “almost all” two-qubit programs take three
invocations of CNOT to implement.

Although physical devices with native multi-qubit op-
erations other than CNOT have been implemented, op-
timality results for these other native gate sets have not
yet appeared. In this paper, we offer tools for the analy-
sis of this problem, as well as fully worked examples for
particularly interesting gate sets, at the following level of
generality:

Theorem. For S a finite set1 of two-qubit operations
and n ≥ 0 a nonnegative integer, let PnS be the following
set of two-qubit programs

PnS =


· · ·

· · ·

A0
S1

A1
Sn

An

B0 B1 Bn

 ⊆ PU(4)

for Sj ∈ S and Aj , Bj ∈ PU(2).2 In a certain coordinate
system to be described below, PnS can be expressed a union
of (2|S|)n convex polytopes, each described by a (typically
highly redundant) family of linear inequalities of naive
size exponential in n.

We use these results to explore the space of possi-
ble choices for the native gate set, with an emphasis on
those appearing via Rigetti’s choice of interaction Hamil-
tonian [6] (cf. also [7]): the gates CZ, iSWAP, CPHASE,
and XY, where by XY we intend the unitary family

XYθ = exp

(
−1

2
iθ(σ⊗2

X + σ⊗2
Y )

)

1 The finiteness assumption on S may be relaxed to account for
such families as CPHASEθ.

2 Throughout, we write circuits right-to-left: the operator product

AB is written in a circuit diagram as A B .
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=


1 0 0 0
0 cos

(
θ
2

)
−i sin

(
θ
2

)
0

0 −i sin
(
θ
2

)
cos
(
θ
2

)
0

0 0 0 1

 .

Our methods in the case of S = {CZ} recover the results
of Shende, Bullock, and Markov [1, 5]. In the other cases,
we make the following conclusions:

Corollary. The sets P 2
iSWAP and P 3

iSWAP are the same
as the corresponding sets for S = {CZ}. Hence, P 2

iSWAP
has zero volume as a subset of all two-qubit programs.

Corollary. Allowing the parameter of CPHASE to range
freely in 0 ≤ θ ≤ 2π, the sets P 2

CPHASE and P 3
CPHASE are

the same as the corresponding sets for S = {CZ}. Hence
, P 2

CPHASE has zero volume as a subset of all two-qubit
programs.

We find the situation to be quite different for XY:

Corollary (Somewhat informal). As a function of θ, the
volume of the set P 2

XYθ
is maximized at θ = 3π/4, where

it contains 75% of the total volume of two-qubit programs.
Allowing the parameter of XY to range freely, the set
P 2

XY contains ≈96% of the total volume of all two-qubit
programs.

This has a number of interesting consequences: the most
obvious is that the availability of gates in the XY family
can have a dramatic effect on the optimal gate depth of
a generic two-qubit program; another is that the bulk of
this effect is seen by tuning up a single gate from this
family. At the magic value of θ = 3π/4, we provide an
explicit routine for checking membership in this preferred
subspace.

Our methods also lend themselves to an analysis of
problems in approximate compilation. Each of the sets
P 2
S described above is a proper subset of the space of all

two-qubit programs, and for a two-qubit program G it is
natural to search for “closest” two-qubit program to G
within P 2

S is and to give a precise expression for this dis-
tance. We give a protocol describing the use of our tech-
niques in this situation, and we give explicit computa-
tions of the best approximant and its minimum distance
for certain interesting gates (e.g., SWAP) and interesting
gate sets (e.g., XY 3π

4
).

We include as appendices an introduction to the math-
ematics underpinning these results as well as a simpler
viewpoint that yields similar qualitative results but is
quantitatively inexplicit.

II. THE GEOMETRY OF TWO-QUBIT
PROGRAMS AND THE CANONICAL

DECOMPOSITION

As motivation, we include a brief treatment of the Eu-
ler decomposition of single-qubit programs into triples of
rotations. We begin by fixing notation:

Xα =

(
cos α2 −i sin α

2
−i sin α

2 cos α2

)
, Yα =

(
cos α2 − sin α

2
sin α

2 cos α2

)
,

Zα =

(
e−i

α
2 0

0 ei
α
2

)
.

Theorem 1 (YZY–Euler decomposition, [8, pg.
189–207]). Any single-qubit program U ∈ PU(2) can be
expressed as a triple of rotations:

U = Yα · Zβ ·Yγ ,

where 0 ≤ β ≤ π.3

Proof. We make use of the involution θ(U) = UT , re-
ferred to as a Cartan involution. The function θ is non-
trivial in the sense that it admits a pair of exponential
families Yα and Zβ satisfying 4

θ(Yα) = Y−α, θ(Zβ) = Zβ .

Inspired by the product form that we are pursuing, we
consider the Cartan double of U :

γ(U) = U · θ(U) = UUT .

In terms of the putative decomposition, this operation
gives

γ(Yα · Zβ ·Yγ) = Yα · Z2β ·Y−α.

Indeed, UUT is a symmetric unitary matrix, hence ad-
mits a basis of real eigenvectors. These can be used to
determine the value of α; the eigenvalues of γ(U) can
be used to determine the value of 2β (and hence β);
and, finally, the value of γ can then be determined from
Yγ = Z−β ·Yα · U .

Remark 2. This decomposition theorem gives rise to a
wide family of other decompositions: any nonzero Lie
algebra element h ∈ pu(2) satisfying exp(2π · h) = 1
forms a maximal torus H(t) = exp(th) (which includes
Yt = exp(− it2 σY ) and Zt = exp(− it2 σZ)), and as any
two maximal tori are conjugate in a compact Lie group,
we may conjugate either one of the rolls appearing in
Theorem 1 into a roll along our preferred axis, with the
other coming along for the ride.

Remark 3. In the practice of microwave-driven super-
conducting qubits, there is some preferred roll—say, Z—
which is a “virtual” operation, implemented as a frame
shift, and hence is both instantaneous and immune to
device error. Because of this, it is very common to con-
jugate the above decomposition by Q = Xπ

2
to instead

produce a “ZYZ” version of the Euler decomposition.

3 Moreover, for 0 < β < π, the values 0 ≤ α, γ ≤ 2π are essentially
unique.

4 This is most naturally expressed as a condition on the Lie alge-
bra: the eigenspaces of Dθ of weights 1 and −1 are both positive-
dimensional.
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We now turn to the analogous structure theorem for
two-qubit operators:

Theorem 4 (“Canonical decomposition”, [2, Section
III], [9, Theorem 2], [3, Section III.A.1]). Any two-qubit
unitary operator G admits an expression as

G =
A

CAN(α, β, γ)
C

B D

,

where A, B, C, and D are single-qubit operators, where
π/4 ≥ α ≥ β ≥ |γ| are certain parameters, and where

CAN(α, β, γ) = exp

(
−i
2

(ασ⊗2
x + βσ⊗2

y + γσ⊗2
z )

)
.

The parameter values are unique, and for generic param-
eter values the local gates are also unique.

Proof. As before, the Cartan involution θ(U) = UT and
associated Cartan doubling γ(U) = UUT give a decom-
position of U into a product OLDOR, where these factors
satisfy

OTL = O−1
L , OTR = O−1

R , DT = D,

hence OL and OR are orthogonal matrices and D is a di-
agonal matrix. As with the translation from YZY–Euler
decomposition to ZYZ–Euler decomposition, the theorem
as stated arises by conjugating this decomposition by a
particular operator Q,

Q =
1√
2

 1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 ,

which satisfies Q†PU(2)⊗2Q = PO(4).5,6 The gate fam-
ily CAN(α, β, γ) is then the conjugate of the diagonal
matrices by Q.

Remark 5. As in the single-qubit case, this decom-
position is algorithmically effective: given a two-qubit
gate G, by selecting angle values α, β, and γ the opera-
tor spectrum of γ(GQ) can be made to agree with that of
CAN(α, β, γ); a special-orthogonal matrix diagonalizing
γ(Q†GQ) recovers A and B; and, from this, one can then
solve for C and D [5, Proposition IV.3]. The keystone
of Shende, Bullock, and Markov is a process for man-
ufacturing circuits with low CNOT–count for realizing
particular values of CAN(α, β, γ). In general, they show
that this requires three applications of CNOT, and they
moreover show which gates are accessible within two ap-
plications of CNOTs (cf. Appendix B): these are those
gates whose canonical parameter γ is fixed at zero.

5 Identifying a useful analogue of Q and of PU(2)⊗2 is the primary
inhibitor of generalizing this to higher qubit counts.

6 See [5, Proposition IV.3] for a list of references concerning the
provenance of this operator Q.

Remark 6. Also as in the case of ZYZ–Euler decompo-
sition, this decomposition is arranged so that the outer
factors have superior execution properties on many quan-
tum devices. The outer factors are made up entirely of
single qubit operators, which typically experience device
errors at a rate 1–2 orders of magnitude less than multi-
qubit operators, which must be used to express the mid-
dle factor. This prompts us to focus on the “hard” part
of the problem—i.e., the middle factor—and to consider
the maximal torus of canonical gates as the “interesting”
or “difficult” part of two-qubit program compilation.

III. THE MULTIPLICATIVE EIGENVALUE
PROBLEM AND THE MONODROMY

POLYTOPE

Shende, Bullock, and Markov’s description of those
two-qubit programs accessible within two applications of
CNOT relies on specific commutation relations and ex-
plicit computation (again, cf. Appendix B). We would
like to ask a more general version of this same question:

Problem 7. Let E and F be fixed two-qubit gates.

1. Give a description of the subspace
A1

E
A2

F
A3

B1 B2 B3

 ⊆ PU(4),

for A1, A2, A3, B1, B2, B3 ∈ PU(2).

2. Given G ∈ PU(4) which is known to belong to this
subset, algorithmically produce local gates A1, A2,
A3, B1, B2, and B3 realizing G.

In this section, we show that this reduces to a well-
known problem in representation theory, the multiplica-
tive eigenvalue problem, whose solution comes in the form
of the monodromy polytope.

For any such G, we apply the transformation

(−)Q := Q†(−)Q

to produce GQ = O1E
QO2F

QO3, where O1, O2, O3 are
the orthogonal matrices conjugate to the indicated local
gates under Q. In turn, EQ and FQ have orthogonal
decompositions:

EQ = OE,LDEOE,R, FQ = OF,LDFOF,R,

where DE and DF are diagonal and OE,L, OE,R, OF,L,
and OF,R are all orthogonal. Combining these decompo-
sitions yields

GQ = O1OE,LDEOE,RO2OF,LDFOF,RO3.

In order to place GQ within the space of two-qubit
gates, we then calculate its canonical parameters, which
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is equivalent to computing the spectrum of the Cartan
double γ(GQ):

γ(GQ) = O1OE,LDEOE,RO2OF,LDFOF,RO3·
(O1OE,LDEOE,RO2OF,LDFOF,RO3)T

= O1OE,LDEOE,RO2OF,LD
2
F ·

OTF,LO
T
2 O

T
E,RDEO

T
E,LO

T
1

∼ OD2
EO

TD2
F ,

where O = OE,RO2OF,L is orthogonal and ∼ denotes
unitary similarity. We have therefore reduced Problem 7
to the following:

Problem 8. Let DE and DF be fixed diagonal special
unitary matrices.

1. Calculate the possible spectra of operators of the
form OD2

EO
TD2

F as O ranges over orthogonal ma-
trices.

2. Given a particular such operator spectrum DG,
calculate an orthogonal matrix O such that
OD2

EO
TD2

F diagonalizes to give D2
G.

Problem 8 is a restricted instance of the multiplicative
eigenvalue problem:

Problem 9. Let U1, U2, and U3 be unitary operators.

1. Multiplicative eigenvalue problem: Describe the
possible spectra of all triples U1, U2, U3 satisfying
U1U2U3 = 1 7.

2. Effective saturation problem: Given a triple of op-
erator spectra satisfying the conditions of (1), algo-
rithmically produce U1, U2, and U3 realizing these
spectra and satisfying U1U2U3 = 1.

What is immediately clear is that the collection of spec-
tral quadruples satisfying Problem 8.1 can be converted
to satisfy Problem 9.1. Continuing from the similarity
relation above, the corresponding equation

OG,LD
2
GO

T
G,L ∼ OD2

EO
TD2

F

U†D2
GU = OD2

EO
TD2

F

can be rewritten as

1 = (OD2
EO

T )D2
F (U†(D2

G)†U)

= U1U2U3,

which shows that the spectra of D2
E and D2

F agree with
those of U1 and U2, and the spectrum of D2

G agrees with

that of U†3 . What is nonobvious is that the reverse in-
clusion is also true, which rests on a nontrivial result in
symplectic geometry:

7 Of course, there is also a variant of the multiplicative eigenvalue
problem concerning strings of operators of length k ≥ 3.

Theorem 10 ([10, Theorem 3]). Let U1, U2, U3 be a
string of unitary operators satisfying U1U2U3 = 1. Then
there exist operators V1 ∼ U1, V2 ∼ U2, V3 ∼ U3 within
the unitary similarity classes of the originals which sat-
isfy V1V2V3 = 1 and for which V1 and V2 are simulta-
neously unitarily conjugate to symmetric unitaries, i.e.,
there exists a unitary W so that conjugating by W yields

(W †V1W )(W †V2W )(W †V3W ) = 1

(OT1 D1O1)(OT2 D2O2)(V ′3) = 1

for some orthogonal matrices O1, O2 and diagonal ma-
trices D1, D2 in the similarity classes of U1, U2.

Corollary 11. For U1, U2, and U3 unitaries satisfy-
ing U1U2U3 = 1 and with diagonalizations D2

E, D2
F , and

(D2
G)† respectively, there exists an orthogonal matrix O

and a unitary matrix U such that

U†D2
GU = OD2

EO
TD2

F ,

i.e., solutions to Problem 9 give rise to solutions to Prob-
lem 8.

Proof. Start by applying the Theorem:

1 = V1V2V3

= (OT1 DEO1)(OT2 DFO2)W †V3W

O2W
†V †3 WOT2 = O2O

T
1 D

2
EO1O

T
2 D

2
F

U†D2
GU = OD2

EO
TD2

F ,

where we have written O = O2O
T
1 and U = EWOT2 for

E a matrix with columns an eigenbasis of V †3 .

We now seek to enunciate the solution to Problem 9
given by Agnihotri, Meinrenken, and Woodward, which
requires some supporting vocabulary. Primarily, there is
a particular presentation of operator spectra which we
will find useful:

Definition 12 (cf. [11, Chapter 4]). For a special unitary
matrix U , we may uniquely present its spectrum

SpecU = (e2πiα1 , . . . , e2πiαn)

as

LogSpecU = (α1, . . . , αn),

where

α1 ≤ · · · ≤ αn ≤ α1 + 1, α+ :=
∑
j

αj = 0.

We refer to the collection of all such n–tuples as A,
the fundamental alcove of SU(n), and we will write
LogSpecU for the associated point in A.

Let C2 ≤ SU(n) be the finite central subgroup {±1},
and let U ∈ SU(n)/C2 be a member of the quotient
group, which we may present as a coset

{Ũ ,−Ũ} ⊂ SU(n).
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The logarithmic spectra of these matrices

α∗ = LogSpec Ũ , β∗ = LogSpec(−Ũ)

are related by a form of rotation:

(α1, α2, α3, α4) = ρ (β1, β2, β3, β4)

:=

(
β3 −

1

2
, β4 −

1

2
, β1 +

1

2
, β2 +

1

2

)
.

By appropriately picking either LogSpecU = LogSpec Ũ
or LogSpec−Ũ , we see that we may uniquely specify a
sequence LogSpecU which further satisfies either

(LogSpecU)2 + 1/2 > (LogSpecU)4

or  (LogSpecU)2 + 1/2 = (LogSpecU)4

and
(LogSpecU)1 + 1/2 ≤ (LogSpecU)3

 ,

where (LogSpecU)j denotes the jth component of the
quadruple LogSpecU . We similarly refer to the collection
of all such n–tuples as AC2

, the fundamental alcove of
SU(n)/C2.

Remark 13. The first variant is the natural target of the
logarithmic spectrum of a special unitary operator, and
it forms a convex polytope. This second variant is use-
ful because it is the natural target of the logarithmic
spectrum of the Cartan double of a projective unitary
operator:

LogSpec γ(−) : PU(4)→ AC2
.

However, it does not quite form a convex polytope: the
closure AC2

is a convex polytope, but the values γ∗ satis-
fying γ2 + 1/2 = γ4 and γ1 + 1/2 > γ3, which constitute
half a face of AC2

, are missing from AC2
.

Remark 14. The logarithmic spectrum γ∗ of an opera-
tor U is related to its canonical coordinates as follows:
starting with the triple(π

2
· (γ4 − γ1),

π

2
· (γ3 − γ1),

π

2
· (γ2 − γ1)

)
,

by applying permutations and the operators

(x, y, z) 7→ (π − x, π − y, z)

there is a unique representative (x, y, z) satisfying π/2 ≥
x ≥ y ≥ |z|. This triple gives the canonical coordinates
of U .

Definition 15. The extremal points of the polytope AC2

lie at the following coordinates:

LogSpec γ(I) = e1 = (0, 0, 0, 0),

LogSpec γ(CZ) = e2 = (−1/4,−1/4, 1/4, 1/4),

LogSpec γ(iSWAP) = e3 = (−1/2, 0, 0, 1/2),

LogSpec γ(SWAP) = e4 = (−3/4, 1/4, 1/4, 1/4),

LogSpec γ(
√

SWAP) = e5 = (−5/8,−1/8, 3/8, 3/8),

ρLogSpec γ(
√

SWAP) = e6 = (−1/8,−1/8,−1/8, 3/8).

The subspace AC2
of AC2

is given by deleting the sub-
space of convex combinations of e2, e3, and e6 in which
e6 carries a nonzero coefficient.

We are now in a position to state the solution to Prob-
lem 9.1. We will give a more complete exposition of this
result in Appendix A, but for our intended application
we need only the following statement:

Theorem 16 (see Theorem 60). Let U1, U2, U3 ∈ SU(4)
satisfy U1U2 = (−1)jU3 for some j (i.e., U1U2 ≡ U3 as
elements of SU(4)/C2), and let

α∗ = LogSpecU1, β∗ = LogSpecU2, γ∗ = LogSpecU3

be the associated logarithmic spectra. For r, k > 0 be
positive integers with r + k = n, let Pr,k denote the set
of partitions of k into r parts:

Pr,k = {(I1, . . . , Ir) ∈ Zr | 0 ≤ I1 ≤ · · · ≤ Ir ≤ k}.

Select r, k > 0 satisfying r + k = 4, select a, b, c ∈
Pr,k, and take d ≥ 0; then if the associated quantum

Littlewood–Richardson coefficient N c,d
ab (r, k) (see Defini-

tion 59 and Figure 10) satisfies N c,d
ab (r, k) = 1, then the

following inequality must hold:

d−
r∑
i=1

αk+i−ai −
r∑
i=1

βk+i−bi +

r∑
i=1

(ρjγ)k+i−ci ≥ 0. (*)

The polytope defined by these inequalities is the mon-
odromy polytope.

Moreover, given alcove sequences α∗, β∗, γ∗ which be-
long to the monodromy polytope, then there must exist
U1, U2, U3 with

α∗ = LogSpecU1, β∗ = LogSpecU2, γ∗ = LogSpecU3

and which satisfy U1U2 = (−1)jU3 for some j.

From this we draw the following consequence:

Corollary 17. Let S be a gate set whose image through
LogSpec γ(−) is a union of convex polytopes. The im-
age of PnS through LogSpec γ(−) is then also a union of
convex polytopes.8

Proof. We have assumed the base case: LogSpec γ(P 1
S)

is a union of convex polytopes. Assuming that
LogSpec γ(Pn−1

S ) is a union of convex polytopes, each

8 For gate sets S of interest to us, it is often the case that S appears
as a subset of P 2

S . This condition entails the nesting property

PnS ⊆ P
n+1
S for n ≥ 2.
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constituent polytope is described by a finite collection
of linear inequalities. The monodromy polytope is itself
also described by a finite collection of linear inequali-
ties. Select a polytope constituent of LogSpec γ(P 1

S) and

of LogSpec γ(Pn−1
S ). By imposing those linear inequal-

ities describing the constituent of LogSpec γ(P 1
S) on the

first coordinate, imposing those linear inequalities de-
scribing the constituent of LogSpec γ(Pn−1

S ) on the sec-
ond coordinate, and using Fourier–Motzkin elimination
to project to the final coordinate, we produce a subset of
LogSpec γ(PnS ) which is described by a finite collection
of linear inequalities. It follows that this too is a convex
polytope, and the entire set LogSpec γ(PnS ) is the union
of the convex polytopes formed in this way.

The reader is invited to explore the details of Theo-
rem 16 as recited in Appendix A, but we include here
a hands-on analysis of the analogous single-qubit case.
Suppose that only some parameter values for Z–gates are
in our native gate set, but we may freely choose the pa-
rameter in our Y–gates. In this context, we then seek
to answer the following question: which circuits can be
built through longer sequences of these gates?

We begin with a circuit of the form U = ZαYβZγ with
α, γ fixed and β allowed to range. Using YZY–Euler de-
composition, this can be equivalently written as YδZεYλ,

and hence Y†δUY†λ = Zε gives us access to Zε with ε po-
tentially distinct from α and γ. Using the two decompo-
sitions of U , we can explicitly solve for ε:

χ(U)(z) = z2 − tr(U)z + 1

= z2 − 2z cos
β

2
cos

α+ γ

2
+ 1,

χ(U)(z) = z2 − 2z cos
ε

2
+ 1,

hence

ε

2
= cos−1

(
cos

β

2
cos

α+ γ

2

)
.

The role of β is thus in some sense to modulate the in-
terference of α and γ, and the resulting value ε satisfies a
kind of inequality: the possible values of LogSpecU (suit-
ably reinterpreted for use with PU(2)) form a subset of
the ray connecting LogSpecZα+γ and LogSpec 1 = (0, 0)
9. However, the dependence of ε on β is decidedly non-
linear 10.

We now connect Theorem 16 to this result. In Figure 1,
we provide a table of quantum Littlewood–Richardson
coefficients relevant for PU(2). The mathematics behind
Theorem 16 then gives the following:

9 As a consequence of the bounds on the possible values of β, this
segment does not always make it all the way to (0, 0).

10 An amusing corollary is that the specific value α = γ = π/2 is
sufficient to generate all other Z–rotations after insertion of a
Y –rotation.

r k a b c d Nc,d
ab (r, k)

1 1 (0) (0) (0) 0 1

(1) (0) (1) 0 1

(1) (0) 1 1

FIG. 1. Structure constants in qH∗Gr(1, 1). There is a further

symmetry relation Nc,d
ab (r, k) = Nc,d

ba (r, k).

Corollary 18. Suppose that U1, U2, U3 ∈ SU(2) satisfy
U1U2 = U3, and let

−1/2 ≤ α1 ≤ α2 ≤ 1/2,

−1/2 ≤ β1 ≤ β2 ≤ 1/2,

−1/2 ≤ γ1 ≤ γ2 ≤ 1/2

be the angles of their respective eigenvalues, expressed
in revolutions. For a, b, c, d as listed in Figure 1, the
following inequality must hold:

d− α2−a − β2−b + γ2−c ≥ 0. (*)

Moreover, given values of α∗, β∗, γ∗ satisfying these
inequalities, there then exist U1, U2, U3 which satisfy
U1U2 = U3 as well as

α∗ = LogSpecU1, β∗ = LogSpecU2,

γ∗ = LogSpecU3.

Explicitly, these inequalities are

α1 + β1 ≤ γ1, α2 + β1 ≤ γ2,

α2 + β2 ≤ γ1 + 1, α1 + β2 ≤ γ2,

or, in terms of α2, β2, γ2 ≥ 0 alone,

−α2 +−β2 ≤ −γ2, α2 +−β2 ≤ γ2,

α2 + β2 ≤ −γ2 + 1, −α2 + β2 ≤ γ2,

The resulting polytope is portrayed in Figure 2. Isolating
γ2 (or, equivalently, studying a vertical ray in the Figure
above a particular choice of (α2, β2)), this yields

|α2 − β2| ≤ γ2 ≤ min{α2 + β2, 1− (α2 + β2)}.

A geometrical interpretation of this restriction is shown
in Figure 3.

IV. MONODROMY POLYTOPE SLICES FOR
THE STANDARD GATES

In this section, we consider the “standard gates” that
appear in the paper of Smith, Curtis, and Zeng [12, Ap-
pendix A] and their effect as members of a native gate
set. Each of these gates or gate families specify either a
particular point in AC2

or a line segment in AC2
, which
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FIG. 2. Full monodromy polytope for SU(2), shaded along
the coordinate γ.

FIG. 3. The polytope intersected with the planes α = 0.1,
shaded red, and β = 0.3, shaded blue, resulting in restrictions
on γ, shaded white.

in either case can be specified via a family of linear in-
equalities. By consequence, and similarly to the proof
of Corollary 17, the space of programs which are acces-
sible within a fixed number of applications of the native
gates then appears as a projection of linear slice of the
monodromy polytope. Our goal is to give descriptions of
these projections.

A. The CZ gate

The sets LogSpecP 0
CZ and LogSpecP 1

CZ are singletons
and hence automatically convex polytopes:

LogSpecP 0
CZ = e1,

LogSpecP 1
CZ = e2.

In order to compute LogSpecP 2
CZ, we intersect the poly-

tope described in Theorem 16 with the six hyperplanes
describing the conditions α∗, β∗ ∈ LogSpecP 1

CZ:

Lemma 19 (cf. [1, Proposition III.3]). LogSpec γ(P 2
CZ)

is the convex polytope described by

LogSpec γ(P 2
CZ) =

{
(γ1, γ2, γ3, γ4) ∈ AC2

∣∣∣∣∣ γ1 = −γ4,

γ2 = −γ3

}
.

The extremal points of LogSpec γ(P 2
CZ) are

LogSpec γ

  = e1,

LogSpec γ


Xπ

2

 = e2,

LogSpec γ

 Xπ
2

Xπ
2

 = e3.

Proof. Using the quantum Littlewood–Richardson coeffi-
cients

N
(2,0),0
(1,0)(1,0)(2, 2) = 1, N

(1,1),0
(1,0)(1,0)(2, 2) = 1

we apply Theorem 16 to deduce the inequalities

0− (α2+1−1 + α2+2−0)− (β2+1−1 + β2+2−0)

+γ2+1−2 + γ2+2−0 ≥ 0,

0− (α2+1−1 + α2+2−0)− (β2+1−1 + β2+2−0)

+γ2+1−1 + γ2+2−1 ≥ 0,

i.e.,

0− (1/4 +−1/4)− (1/4 +−1/4) + γ1 + γ4 ≥ 0,

0− (1/4 +−1/4)− (1/4 +−1/4) + γ2 + γ3 ≥ 0.

Because of the additional constraint γ+ = 0, we learn
that these nonnegative quantities are in fact exactly zero:

γ1 = −γ4, γ2 = −γ3.

This plane passes through three of the extremal vertices
of AC2

, hence LogSpec γ(P 2
CZ) is contained inside of the

triangle formed as the convex hull of those three ver-
tices. In order to show that this inclusion is actually
an equality, we need only produce witnesses that these
three points have preimages in P 2

CZ. One checks that the
circuits described above do the job: not only do they im-
age to the appropriate vertex under LogSpec γ(−), but
the mirroring value j in Theorem 16 is not used, so that
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these vertices belong to the same polytope. Hence, their
convex hull is as claimed 11.

The briefest method for accessing P 3
CZ follows along

identical lines: if we can show that the extremal vertices
of AC2

have realizations within LogSpec γ(P 3
CZ) and we

are allowed to apply convexity, then we can conclude the
following equality 12:

Lemma 20 (cf. [5, Section V]). LogSpec γ(P 3
CZ) = AC2

,
where the following circuits realize the extremal points:

e1 = LogSpec γ


Yπ

2
Xπ

2

 ,

e2 = LogSpec γ


Yπ

2
Xπ

 ,

e3 = LogSpec γ

 Xπ
2

Yπ
2

Xπ

 ,

e4 = LogSpec γ

 Xπ
2

Xπ
2

Xπ
2

Xπ
2

 ,

e5 = LogSpec γ

 Y− 3π
4

Y−π4

X−π2 Z−π4 Xπ
2

 .

Proof. It is automatic that we have LogSpec γ(P 3
CZ) ⊆

AC2
. In order to show the opposite inclusion, we need

to supply the necessary realizations (with the necessary
mirroring property, as in the proof of Lemma 19). One
may check directly that the circuits above will do.

11 One can avoid divine inspiration by instead producing the entire
family of inequalities of Theorem 16, adding the equalities com-
ing from our selection of α∗ = β∗ = LogSpec γ(CZ), optionally
pre-reducing the system, calculating all of the points of triple
intersection, and throwing out those points which do not satisfy
the original family of inequalities. This will, ultimately, produce
the same set of extremal points. While this has the benefit of be-
ing mechanical (up to the point of calculating the realizations),
it is quite arduous—and it does not produce the realizations of
the extremal points as circuits.

12 There is also the following alternative approach that mimics the
alternative approach to P 2

CZ. By intersecting the full polytope
described by Theorem 16 with the family of inequalities which
constrain α∗ ∈ LogSpec γ(P 2

CZ) and with the equality which
constrains β∗ = LogSpec γ(CZ), we arrive at a convex poly-
tope contained in AC2 × ∗ × AC2 . Projecting to the last fac-
tor yields LogSpec γ(P 3

CZ), which we can accomplish by using
Fourier–Motzkin elimination to delete the remaining degrees of
freedom in the first factor. This, too, is completely mechanical
but is even more arduous.

Remark 21. In order to explain the provenance of the
first three circuits in the Lemma statement, we remark
that Lemma 19 shows that CZ ∈ P 2

CZ, and hence we
are led to the method suggested by Corollary 17. Be-
ginning with the realization of the extremal vertex e2 ∈
LogSpec γ(P 2

CZ), we need only solve for the outer local
gates to realize CZ exactly, as in:

=
Zπ

2

Zπ
2

X−π2 Y−π
2

Xπ
2

Using this formula, we may augment the other realiza-
tions of the extremal vertices of LogSpec γ(P 2

CZ) into re-
alizations in LogSpec γ(P 3

CZ) by substituting the above
circuit for CZ in for, say, the left-hand CZ supplied in
Lemma 19. The realization supplied for the fourth ex-
tremal vertex is a rephrasing of the usual expression of
SWAP as a triple of alternating CNOTs, and the fifth we
produced by numerical search.

Remark 22 ([5, Proposition V.1]). Critically for quantum
compilation, a circuit realization for any point within
LogSpec γ(P 3

CZ) can be exactly produced algorithmically.
The circuit proposed by Shende, Markov, and Bullock is

CAN(α, β, γ) ≡
Ya Yc

Z b
2

Z b
2

,

where a, b, and c are certain linear functions of α, β,
and γ. In general, exact decompositions do not seem to
exist, and even numerical methods pose a challenge; see
Section VII.

B. The iSWAP gate

Now we prove analogous results for S = {iSWAP}. We
will be briefer in the aspects that exactly mirror those for
the gate CZ.

The sets LogSpec γ(P 0
iSWAP) and LogSpec γ(P 1

iSWAP)
are again singletons:

LogSpec γ(P 0
iSWAP) = (0, 0, 0, 0),

LogSpec γ(P 1
iSWAP) = (−1/2, 0, 0, 1/2).

Lemma 23. LogSpec γ(P 2
iSWAP) is described by

LogSpec γ(P 2
iSWAP) =

{
γ∗ ∈ AC2

∣∣∣∣∣ γ1 = −γ4,

γ2 = −γ3

}
.

The extremal points of LogSpec γ(P 2
iSWAP) are

LogSpec γ



iS
W

A
P

iS
W

A
P

 = e1,
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LogSpec γ



iS
W

A
P

iS
W

A
P

Xπ
2

 = e2,

LogSpec γ


iS

W
A

P Xπ
2

iS
W

A
P

Xπ
2

 = e3.

Proof. This proof entirely mimics that of Lemma 19, but
this time the relevant quantum Littlewood–Richardson
coefficients are

N
(2,0),0
(0,0)(2,0)(2, 2) = 1, N

(1,1),0
(1,0)(2,1)(2, 2) = 1.

Moving on to P 3
iSWAP, we have

Lemma 24. LogSpec γ(P 3
iSWAP) = AC2

, with extremal
realizations

e1 = LogSpec γ



iS
W

A
P Xπ

2

iS
W

A
P Yπ

2

iS
W

A
P

Xπ
2

Yπ
2

 ,

e2 = LogSpec γ



iS
W

A
P Xπ

2

iS
W

A
P Xπ

2

iS
W

A
P

Xπ
2

Yπ
2

 ,

e3 = LogSpec γ



iS
W

A
P Xπ

2

iS
W

A
P Xπ

2

iS
W

A
P

Xπ
2

Xπ
2

 ,

e4 = LogSpec γ



iS
W

A
P

iS
W

A
P X−π2

iS
W

A
P

Xπ
2

 ,

e5 = LogSpec γ



iS
W

A
P Y 3π

4

iS
W

A
P Z−π4 X−π2

iS
W

A
P

Xπ
2

Yπ
4

 .

Proof. Again, the proof is almost identical to that
of Lemma 20, beginning with an exact realization
of iSWAP ∈ P 2

iSWAP by solving for the outer local
gates in the realization of e3 = LogSpec γ(iSWAP) in
LogSpec γ(P 2

iSWAP):

iS
W

A
P

=

Xπ
2

Z−π2

iS
W

A
P Xπ

2

iS
W

A
P Yπ

2

Xπ
2

Z−π2 Xπ
2

Yπ
2

Using this, we can inflate the left-hand iSWAP in
the realizations of the extremal vertices in Lemma 23
to produce realizations of those same vertices in
LogSpec γ(P 3

iSWAP). What remains is to produce realiza-

tions of the extremal points SWAP and
√

SWAP, where
we rely on a standard decomposition.

Remark 25. Combining the results above with those from
the previous subsection, we conclude

P 2
CZ = P 2

iSWAP, P 3
CZ = P 3

iSWAP.

As in the case of CZ, the compilation problem for
iSWAP (i.e., Problem 7.2 and its depth-three variant)
admits exact solutions. This does not appear to be in
the literature, and so we include an analysis here:

Corollary 26. For 1/2 ≥ α ≥ β ≥ 0, the operator

U(α, β) =

iS
W

A
P Yα+β

2 ·π

iS
W

A
P

Yα−β
2 ·π

satisfies

LogSpec γ(U(α, β)) = (−α,−β, β, α).

Proof. After conjugation by Xπ
2
⊗ Xπ

2
, the operator

U(α, β) expresses a pair of uniformly controlled rolls: a
Z–roll by ±1

2 (α − β) on the first qubit and a Z–roll by
±1
2 (α + β) on the second. It follows that the eigenval-

ues of this operator are (eiα/2, e−iα/2, eiβ/2, e−iβ/2), and
hence that the logarithmic spectrum of its Cartan double
is as claimed.

Remark 27 (cf. [1, Proposition V.2]). Our strategy for
algorithmically producing circuits for points in P 3

iSWAP
will be to isolate the troublesome extremal vertex e4.
Once this vertex does not contribute to the remaining
convex linear combination, the remainder is solved by
Corollary 26. Selecting a gate U ∈ PU(4), we seek local
gates A and B so that

V (U,A,B) := U
A

iSWAP
B

satisfies LogSpec γ(V (U,A,B)) ∈ P 2
iSWAP. We apply

Lemma 23 to see that this is accomplished by finding
values of A and B so that tr γ(V (p,A,B)) is real. It will
turn out that we may take A = Yσ and B = 1, which we
can see by manual calculation:

tr γ


U

Yσ
iSWAP


= −2

 4∑
j=1

u2ju3(j+(−1)j −
4∑
k=1

u4ku1(k+(−1)k

 cosσ
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+−2

 2∑
j=1

4∑
k=1

u(2j)ku(2j+1)(k−2)(−1)(j−1)+k

 sinσ,

where we have denoted the components of U according
to

U =


u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 ,

and where we have interpreted the indices modulo 4. In
particular, this summation formula enables us to solve
the equation

Im (tr γ (V (U, σ))) = 0

by picking a value of σ satisfying

− Im
(∑

j u2ju3(j+(−1)j −
∑
k u4ku1(k+(−1)k

)
Im
(∑2

j=1

∑
k u(2j)ku(2j+1)(k−2)(−1)(j−1)+k

) = tanσ.

Because the tangent function is surjective, this equation
is always soluble.

As one remaining case of interest, we can also describe
the collection of gates accessible to a gate set that has
both CZ and iSWAP available:

Lemma 28. The set P 2
iSWAP,CZ is the union of P 2

iSWAP,

(or P 2
CZ) and the convex polytope{
γ∗ = (γ1, γ2, γ3, γ4) ∈ AC2

∣∣∣∣∣ γ4 = 1/2− γ3,

γ1 = −1/2− γ2

}
,

which has extremal vertices e2, e3, e4.

This gate set also admits algorithmic decomposition,
which one may verify by direct calculation:

Lemma 29. For γ∗ ∈ LogSpec γ(P 2
iSWAP,CZ), there are

two entries satisfying

−1/4 ≤ γi ≤ γj ≤ 1/4.

Setting α = (γi + γj)π and β = (γi − γj)π, we then have

γ∗ = LogSpec γ

 Yα

iSWAP
Yβ

 .

C. The CPHASE and PSWAP gate families

As further demonstration of these techniques, we also
consider some combinations of the parametric two-qubit
gates which appear in the Quil standard gate set [12].

Lemma 30. The convex polytope LogSpec γ(P 2
CPHASE)

agrees with LogSpec γ(P 2
CZ) and with

LogSpec γ(P 2
iSWAP).

Proof. The proof is identical to that given for
Lemma 19: the same quantum Littlewood–Richardson
coefficients impose the same symmetry relation on
LogSpec γ(P 2

CPHASE), and the reverse inclusion then fol-
lows from P 2

CZ ⊆ P 2
CPHASE.

Lemma 31. P 2
PSWAP agrees with the other depth-two

sets studied so far:

P 2
PSWAP = P 2

CZ = P 2
iSWAP = P 2

CPHASE.

Proof. This proof proceeds similarly to that of
Lemma 23. This time the relevant quantum Littlewood–
Richardson coefficients are

N
(2,0),1
(2,1)(2,1)(2, 2) = 1, N

(1,1),1
(2,1)(2,1)(2, 2) = 1,

together with the calculation

LogSpec γ(PSWAPθ)

=

(
−1

4
− t

2
,−1

4
+
t

2
,−1

4
+
t

2
,

3

4
− t

2

)
.

An application of Theorem 16 yields inequalities
which enforce the same symmetry conditions on
LogSpec γ(P 2

PSWAP) as in the previous Lemmas. Because
we have P 2

iSWAP ⊆ P 2
PSWAP, we may conclude equal-

ity.

V. MONODROMY POLYTOPE SLICES FOR
THE XY GATE FAMILY

Combining the ideas which motivated iSWAP and
CPHASE, we are also motivated to consider the one-
parameter family of native two-qubit gates given by

XYθ = exp

(
− i

2
· θ · (σxσx + σyσy)

)

=


1 0 0 0

0 cos(θ/2) −i sin(θ/2) 0

0 −i sin(θ/2) cos(θ/2) 0

0 0 0 1

 .

This family is interesting for a few reasons: it is one of
the only remaining “edges” of A (the other being a ray
connecting I to SWAP); it can arise naturally as a gate
natively available to systems where iSWAP is available,
as in [6]; and it itself belongs to the canonical family.

Having noted that XYθ belongs to the canonical fam-
ily, we may compute its associated diagonal coordinates
to be

XYQ
θ =


1 0 0 0

0 eiθ/2 0 0

0 0 e−iθ/2 0

0 0 0 1

 ,
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LogSpec γ(XYθ) =

(
− θ

2π
, 0, 0,

θ

2π

)
.

In pursuit of an analogue of the results of Sec-
tion IV C, we might perform an analysis of the polytope
LogSpec γ(P 2

XY). However, the style of proof from Sec-
tion IV C does not gain any traction: the intersection of
the monodromy polytope with the hyperplanes

α∗ = (−s, 0, 0, s), β∗ = (−t, 0, 0, t)

yields a rather complicated polytope in its wake, and
applying Fourier–Motzkin elimination to the variables s
and t does not appear to appreciably simplify the result.
However, we can use this to efficiently test that particular
points lie inside of LogSpec γ(P 2

XY), which includes the
following nondegenerate set 13:

(0, 0, 0, 0), (−1/4,−1/4, 1/4, 1/4),

(−1/2, 0, 0, 1/2), (−1/3, 0, 1/6, 1/6).

By consequence, LogSpec γ(P 2
XY) has nonzero volume—

a stark difference from the situation of Section IV (and,
in particular, of Section IV C).

Rather than pursue this complicated polytope directly,
we first consider instead a simpler variant of the problem:
given that the polytope LogSpec γ(P 2

XY) has positive vol-
ume, we can also ask whether any particular slice of it,
given by fixing a particular value of θ, also contributes
a nondegenerate subpolytope 14. Just as the nondegen-
eracy of LogSpec γ(P 2

XY) is a surprising contrast to the
results of Section IV C, the existence of such slices would
be a surprising contrast to the results of Section IV A and
Section IV B. Furthermore, if such slices do exist, we can
ask an additional question: which particular values of θ
maximize the volume of the slice?

Fix 0 ≤ θ < π, with corresponding value t = θ/(2π)
satisfying 0 ≤ t < 1/2. The fundamental alcove se-
quences under consideration are then

α∗ = (−t, 0, 0, t), β∗ = (−t, 0, 0, t),

γ∗ = (γ1 ≤ γ2 ≤ γ3 ≤ γ4),

and the inequalities given by combining Theorem 16 with
Figure 10 and the above alcove sequences are

γ1 + 2t ≥ 0, γ1 + γ2 + 2t ≥ 0, −γ4 + 2t ≥ 0,

γ2 + t ≥ 0, γ1 + γ4 + t ≥ 0, −γ3 + t ≥ 0,

γ3 ≥ 0, γ1 + γ4 − 2t ≥ −1, −γ2 ≥ 0,

γ1 − t ≥ −1, γ2 + γ3 − 2t ≥ −1, −γ4 − t ≥ −1.

From these inequalities, we may draw the following con-
sequence:

13 As an interesting aside, SWAP lies outside of this polytope.
14 Of course, this is not automatically true: these subpolytopes

could form something like a “foliation” of LogSpec γ(P 2
XY).

0.0 0.2 0.4 0.6 0.8 1.0
θ/π0.0

0.2

0.4

0.6

0.8

1.0
Volume

FIG. 4. Volume of LogSpec γ(P 2
XYθ

), plotted as a fraction of
the volume of AC2 against θ/π.

Theorem 32. The volume of LogSpec γ(P 2
XYθ

) is max-
imized at θ = 3π/4.

Proof. Because the finite family of inequalities determin-
ing P (θ) = LogSpec γ(P 2

XYθ
) are linearly dependent in

θ, the curve volP (θ) is piecewise cubic in θ. Writing
t = θ/π, one can use this fact, together with sampling [13]
and interpolation techniques, to determine a formula for
volP (t):

volP (t) =


4t3 0 ≤ t ≤ 1/2,

15/2− 36t+ 60t2 − 32t3 1/2 ≤ t ≤ 3/4,

−6 + 18t− 12t2 3/4 ≤ t ≤ 1,

as depicted in Figure 4. From this curve, we may directly
determine its maximum value.

Remark 33. In Figure 5, Figure 6, and Figure 7, we il-
lustrate the solids LogSpec γ(P 2

XYθ
) for varying values of

θ, where we have projected onto the last three coordi-
nates and shaded AC2 red. The solids themselves display
some interesting behavior. First, for 0 ≤ θ ≤ θ′ ≤ 3π/4,
there is an inclusion of solids γ(P 2

XYθ
) ⊆ γ(P 2

XYθ′
),

from which it follows that vol γ(P 2
DB) ≥ vol γ(P 2

XYθ
) for

any 0 ≤ θ ≤ 3π/4 as in the Theorem. However, for
3π/4 ≤ θ < θ′ ≤ π, neither of γ(P 2

XYθ
) and γ(P 2

XYθ′
) is

contained in the other: although γ(P 2
XYθ

) continues to
lose volume as θ approaches π from the left, the solid
also continues to pick up “new” two-qubit programs as
it shrinks.

Definition 34. Motivated by Theorem 32, we also refer
to XY 3π

4
by the briefer synonym DB 15.

It is then of further interest to give a precise description
of the polytope LogSpec γ(P 2

DB).

15 Dagwood Bumstead is a comic strip character famous for making
really big sandwiches.
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FIG. 5. The solids LogSpec γ(P 2
XYπt) for differing values of t:

2/10, 3/10, . . . , 9/10.

Lemma 35. LogSpec γ(P 2
DB) is a union of two convex

polytopes, respectively described the following two families
of inequalities:{

γ3 ≥ 0,
1

4
≥ |γ2 + γ3|, 0 ≥ γ2

}
,

{
1

2
≥ γ2 + γ3 + γ4, −

1

4
+ γ3 + γ4 ≥ 0,

1

4
≥ |γ2 + γ3|

}
each together with the inequalities specifying the funda-
mental alcove. The extremal points of the first polytope
are(
−1

4
,−1

4
,

1

4
,

1

4

)
,

(
−1

6
,−1

6
, 0,

1

3

)
, (0, 0, 0, 0) ,(

−5

8
,−1

8
,

3

8
,

3

8

)
,

(
−1

2
, 0,

1

4
,

1

4

)
,

(
−1

2
, 0, 0,

1

2

)
,

FIG. 6. The solids LogSpec γ(P 2
XYπt), as shown from a second

perspective, for differing values of t: 2/10, 3/10, . . . , 9/10.
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and those of the second polytope are

(
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FIG. 7. The solids LogSpec γ(P 2
XYπt), as shown from a third

perspective, for differing values of t: 2/10, 3/10, . . . , 9/10.
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Proof. The family of inequalities comes directly from re-
ducing the family supplied by Appendix A. After calcu-
lating all of the points of intersection of the associated
equalities and discarding those intersection points which
do not satisfy all of the inequalities, the remainder is the
set of extremal vertices, as listed above.

Remark 36. The polytope LogSpec γ(P 2
DB) is pictured

from three angles in Figure 8.

FIG. 8. Three views of LogSpec γ(P 2
DB)

Remark 37. For the interested reader, we also in-
clude as Figure 9 a depiction a numerical sampling of
vol LogSpec γ(P 2

X) as X ranges over (the facets of) the
entire monodromy polytope. Points shaded black corre-
spond to those values of X for which vol LogSpec γ(P 2

X)
is at 0% of the total volume, and points shaded white
correspond to 100% of the total volume. In the mid-
dle figure, the heat values along the line connecting the
westernmost point, labeled I, to the center point, labeled
iSWAP, correspond to the graph depicted in Figure 4.
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FIG. 9. An approximate heat map of volumes of symmetric
monodromy polytope slices. The vertices of the figures are
labeled I, CZ, iSWAP, SWAP, and

√
SWAP. A gate U is

shaded according to the volume of LogSpec γ(P 2
U ): black is

0% of the total volume of AC2 , and white is 100%.

VI. APPROXIMATE COMPILATION

We now use the above descriptions of the polytopes
PnS to address the problem of approximate compilation:

Problem 38. Given a two-qubit program U and a gate
set S whose members s ∈ S have associated fidelity es-
timates fs, what circuit drawn from S gives the greatest
fidelity approximation to U?

For instance, in this specific setting of S = {CZ},
Lemma 20 shows that every such U can be written as
a circuit involving three applications of CZ, whereas
Lemma 19 shows that almost no U can be decomposed
exactly using just two applications of CZ. Nonetheless,
if there is an associated cost to each application of CZ, it
may be preferable to deliberately “miss” U (and thereby
incur deliberate error) if it affords an opportunity to
avoid applying CZ a third time (and thereby avoid in-
deliberate error). This idea of approximate compilation
is not a new one [14, Appendix B], and we begin by re-
calling some useful results.

Definition 39 ([15], see also [16]). Given a pair of two-
qubit programs G and G′, we define their average gate
fidelity to be

Favg(G,G′) =

∫
χ∈P(V )

|〈χ|G†G′|χ〉|2

=
4 + | tr(G†G′)|2

4 · 5
∈ [1/5, 1].

Because this comes down to a trace calculation, this
value is especially easy to calculate for simultaneously
diagonalizable gates, which includes pairs of canonical
gates after conjugation by Q:

Lemma 40 ([14, Equation B.8d]). Let G =
CAN(α, β, γ) and G′ = CAN(α′, β′, γ′) be two canoni-
cal gates with parameter differences

∆α =
α′ − α

2
, ∆β =

β′ − β
2

, ∆γ =
γ′ − γ

2
.

Their average gate fidelity is given by

20Favg(G,G′) = 4 + 16

∣∣∣∣∣∣∣
cos ∆α cos ∆β cos ∆γ

+

i sin ∆α sin ∆β sin ∆γ

∣∣∣∣∣∣∣ .
In pursuit of Problem 38, we are also interested in the

effect of local gates on Lemma 40. Rewriting the trace
in terms of Q–conjugates, we have

| trGG′|2 = | trL†2C†L
†
1 · L′1C ′L′2|2 = | trD1O1D2O2|2,

where D1 = (C†)Q and D2 = (C ′)Q are diagonal gates

and O1 = (L†1L
′
1)Q and O2 = (L′2L

†
2)Q are orthogonal

gates. Letting L2 and L′2 range, we see from Corol-
lary 11 that we are maximizing a quadratic functional
over the monodromy polytope slice associated to D1 and
D2. Mercifully, one need not employ this heavy machin-
ery to solve this optimization problem:

Lemma 41 ([17, Section III.A]). Suppose that C1, C2

are fixed canonical gates and that L1, L′1 are fixed local
gates. Letting L2 and L′2 scan over all local gates, the
value Favg(L1C1L

′
1, L2C2L

′
2) is maximized when taking

L2 = L1 and L′2 = L′1.
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Corollary 42. The spectrum of the gate which gives the
best approximation to a two-qubit unitary U depends only
on LogSpec γ(U).

By combining these results to our descriptions of PnS
for our preferred gate sets S, we produce the following
protocol for approximate compilation. In the following,
we take S to be a gate-set with the nesting property of
Corollary 17 and U to be a two-qubit program to be
compiled.

1. Calculate the canonical decomposition associated
to U : U = LCL′.

2. Let n = 1.

3. Use LogSpec γ(U) to calculate the point γn∗ ∈
LogSpec γ(PnS ) which maximizes Favg(U,−). Mul-
tiply this value by fnS

16.

4. Is this fidelity value smaller than the previous fi-
delity value? If not, increment n and try Step 3
again. Otherwise, proceed to Step 5.

5. Find a realization R of γn−1
∗ with canonical decom-

position

R = Lapprox · Capprox · L′approx.

6. Return

LL†approx ·R · (L′approx)†L′.

The first half of the protocol depends only on the struc-
ture of the polytopes PnS , from which we may conclude
the following result:

Corollary 43. The two-qubit gate sets {CZ}, {iSWAP},
{CPHASE}, and {PSWAP} all do an equally effective
job of approximating an arbitrary two-qubit program by a
circuit of multiqubit depth 2.

Proof. This is a direct consequence of coupling the
above ideas to Lemma 19, Lemma 23, Lemma 30, and
Lemma 31.

Remark 44 ([14, Appendix B]). Finding the nearest point
in PnS to an arbitrary outside point is numerically acces-
sible, but it does not usually admit a closed-form solu-
tion. An exception is the case of P 2

CZ, where the nearest
canonical gate to CAN(α, β, γ) is CAN(α, β, 0).

16 We are using fnS as an approximation for the fidelity of the depth
n circuit. However, as no form of fidelity is multiplicative, there
is considerable room for the implementer to express her own
preference here.

Example 45. The SWAP gate is of particular interest,
and so we provide an analysis of its approximants as an
example of these methods. The nearest point to SWAP
within LogSpec γ(P 2

DB) is (−1/3, 0, 1/6, 1/6), with an av-
erage gate infidelity of 3/20. Remarkably, this is also
nearest point within

⋃
θ LogSpec γ(P 2

XYθ
) (i.e., over all

possible choices of fixed values of θ), and in fact this
point belongs to the polytopes associated to the fixed
values of t = θ/2π in the range [1/3, 5/6]. For contrast,
the nearest point to SWAP ≡ CAN(π/2, π/2, π/2) within
LogSpec γ(P 2

CZ) is given by CAN(π/2, π/2, 0), with an
average gate infidelity of 8/20.

VII. OPEN QUESTIONS

In closing the main thread of the paper, we list some
follow-on projects to this paper where we expect to find
interesting results.

A. Algorithmic effectiveness and circuit realization

The single most important avenue left open by this
work is the actual manufacture of a circuit in P 2

X from a
point in LogSpec γ(P 2

X), which we refer to as the realiza-
tion problem.

• Edelman et al. have presented a specialization of
Newton’s method on a curved Riemannian mani-
fold to the orthogonal group with its natural met-
ric [18]. If one were able to provide approximate
solutions to the realization problem, such an algo-
rithm could be used to rapidly increase the accu-
racy of such a solution—but without approximate
solutions, such methods have no guarantee of con-
vergence 17. Additionally, this method would re-
quire foreknowledge of the gates DE and DF in
Problem 8, limiting its applicability in parametric
settings such as P 2

XY.

• From the perspective of Appendix A, a solution to
the monodromy problem corresponds to a flat con-
nection on the trivial PU(4)–bundle over a punc-
tured Riemann sphere with prescribed monodromy
values. The data of an arbitrary connection is eas-
ier to describe: it assigns to each path an element
of PU(4) via parallel transport, perhaps with some
further smoothness conditions. The Rade’s the-
sis [19] analyzes the Yang–Mills flow from an arbi-
trary such connection (with boundary conditions)
to a flat representative, and for generic connections

17 In the particular case of P 2
XY, M. Scheer has pointed out to us

the commutation relation [XX + YY,ZI + IZ] = 0, from which it
follows that the group of interest can be reduced from PO(4) to
a particular four-dimensional subset.
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its convergence is rapid. One might therefore try to
discretize the punctured Riemann sphere and apply
a numerical variant of Rade’s method. It is not im-
mediately clear, however, how one would introduce
the orthogonality constraints present in Problem 8.

• Cole Franks et al. [20, 21] have described effective
numerical methods for solving the additive ana-
logue of the eigenvalue problem. One might explore
multiplicative variations on their methods (espe-
cially those with the orthogonality constraint kept
in mind) which would then adapt to solve the prob-
lem posed here.

B. Alternative interpretations of “maximum”

The particular metric by which we measured the par-
ticular utility of DB over other instances of XYθ was the
volume of the polytope LogSpec γ(P 2

DB). It is not clear
that this is the best such metric (nor that there is a best).
Some alternative metrics that seem worth exploring in-
clude:

• Is there a value of θ for which the average (or
worst) value of average gate infidelity is minimized?
Against this metric, an “elliptical” polytope may be
more valuable than a “spherical” one. This analy-
sis may also change when considering other approx-
imation metrics than average gate infidelity, e.g., a
diamond distance.

• The Haar volume (or, indeed, most any other natu-
ral volume) of a subset of PU(4) is not perfectly re-
lated to the volume of its image as a subset of AC2

.
For any such volume vol′ on PU(4), it would also
be of interest to maximize the analogous function
vol′ P 2

XYt
over t. (For the Haar volume, it appears

that the maximum remains at θ = 3π/4, but we do
not have a proof that this is so.)

It would also be of interest to understand the local
behavior of any of these metrics with respect to small
distances in PU(4). This is the domain of coherent uni-
tary error, and one might hope to leverage some of the
results of this paper to tailor a compilation method for
an error-prone device. Preliminary inspection of this for
P 2

CZ indicates that derivatives conspire so that only large
coherent unitary error gives rise to significant gain in vol-
ume.

C. Unexplored polytopes

The material presented here amounts to a toolkit for
analyzing the space of programs available to a given na-
tive gate set. We have used this as incentive to investigate
a particular native gate set because of its depth-two be-
havior and its relevance to a particular sort of hardware,
but this is hardly the only option.

• Produce concise descriptions of some of the stan-
dard polytopes not fully exposed in this paper (e.g.,
P 2

XY, P 2
{CPHASE,iSWAP}, . . . ).

• Describe those native gate sets S which enjoy P 2
S =

AC2 . This set is nonempty, as the B–gate has this
property. Are there other singletons? Other finite
sets?

• We have avoided checking whether P 3
DB = AC2

.
We certainly expect this to be so, but the associ-
ated system of inequalities exhausts both us and
our computer algebra systems.

D. Leakiness

The analysis of “leaky gates” in Appendix B is not as
thorough as it might be. Here are some open questions
concerning that property:

• In Remark 64, we argue that within the local equiv-
alence class of a leaky entangler, there is one where
the single-qubit gates involved in the leakiness re-
lation are all Z–gates. However, their parameters
may depend on each other in a nontrivial way. Give
a description of the possible ways this can happen.
The exponential family SWAPθ (i.e., the θth root
of SWAP) is probably of interest here.

• Every given example of a leaky gate is leaky on
both coordinates. Is this always the case?

• Every given example of a leaky gate is transpose-
symmetric. Is this always the case?

• Prove the subspace of leaky entanglers coincides
exactly with the edges of AC2 .
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Appendix A: The mathematics of the monodromy
polytope

In this appendix, we produce some of the details (or,
failing that, some soothing exposition) of the mathemat-
ics underlying our results in the main text. This effort
cleaves into two parts: some generic convexity results in
symplectic geometry that give the qualitative solution to
the multiplicative eigenvalue problem (and which merit
the name “monodromy polytope”), followed by some re-
sults around quantum cohomology that give the quani-
tative solution.

1. Qualitative results

Before getting involved with the multiplicative eigen-
value problem directly, we first give a slightly ahistorical
account 18 of a generic qualitative result found in sym-
plectic geometry.

Definition 46. A symplectic manifold M is an oriented
2n–manifold equipped with a choice of symplectic form ω,
which is an nth root of the volume form (or, equivalently,
an everywhere nondegenerate 2–form).

Example 47. Examples of such objects are rife in physics:
all phase spaces are instances of symplectic manifolds.

18 The solution to this problem is strongly coupled to the solu-
tion of the corresponding “linearized” problem: given Hermitian
matrices H1 and H2, what spectra can possibly arise as the op-
erator spectrum of AdU1

H1 + AdU2
H2 for unitary operators

U1 and U2? A conjectural solution to this problem was set out
by Horn [22], which spurred the development of a great many
results in symplectic geometry and representation theory in an
effort to explain his findings, and these tools were ultimately used
by Klyachko [23] to settle the matter. Knutson [24] gives a very
pleasant overview of this body of work and its surroundings, and
although he does not address the multiplicative problem, (gener-
alizations of) these same tools reappear in this context. We in-
tend the word “ahistorical” only in the sense that the tools were
developed in response to the visible behavior of the (additive)
eigenvalue problem, whereas our exposition presents the tools as
generic ideas which we then apply post facto to the eigenvalue
problem—a significant misrepresentation of history.

For an ultra-simple but ultra-concrete example, we might
take M = R2 with the symplectic form ω = dp ∧ dq,
or more generally M = R2d with ω =

∑
j dpj ∧ dqj .

These arise as the phase spaces associated to d many non-
interacting particles on a line. In general, a symplectic
manifold has this as its local form.

Definition 48. Given an action on a symplectic man-
ifold M by a Lie group G, a moment map is a G–
equivariant function Φ: M → g∗, where the target is
imbued with the coadjoint action.

Example 49. Again, examples of such objects are rife in
physics: a nontrivial gauge group gives rise to a G–action
on a manifold, and a moment map can be used to describe
a G–invariant physical quantity, such as the total energy
of a system. In the above example, G = S1 acts on R2

by rotation, and the associated Lie algebra g∗ can be
identified with R in such a way that a moment map is
given by Φ(v) = 1

2 |v|
2. Similarly, the d–torus G = (S1)×d

acts on R2d by rotations of the component planes, and
there is an associated moment map R2d → g∗ ∼= Rd which
sends each particle to its kinetic energy.

A useful tool for manufacturing these objects comes in
the form of the following theorem:

Theorem 50 (Symplectic reduction). Let M be a sym-
plectic G–manifold with associated proper moment map
ΦG, and let H ≤ G be a normal subgroup. When
M//G := Φ−1

G (0)/H is a manifold, it inherits both a sym-

plectic form (which pulls back to Φ−1
G (0) to agree with the

restriction of ωM ) and a compatible action by G/H and
moment map ΦG/H .

Our interest in these objects stems from the following
family of convexity results:

Theorem 51. Let G be a Lie group and let M be a
connected Hamiltonian G–manifold with proper moment
map Φ: M → g∗.

• (Atiyah [25], Guillemin–Sternberg [26, 27]:) Sup-
pose that G = T is a compact torus, and let A be
a choice of fundamental alcove within T . The re-
striction of the image of Φ to A then forms a convex
polytope.

• (Kirwan [28]:) Suppose that G is compact, let T ≤
G be a choice of maximal torus with corresponding
dual Cartan subalgebra π : g∗ → t∗, and let A again
be a fundamental alcove within t∗. The restricted
set A ∩ im(π ◦ Φ) is a convex polytope.

• (Meinrenken–Woodward [29, Theorem 3.13]:) Sup-
pose that G = LG′ for G′ a compact, connected,
simply connected Lie group, let T ′ be a choice of
maximal torus within G′, and let A′ be a choice of
fundamental alcove within (t′)∗. The intersection
Φ(M) ∩A′ is then a convex polytope 19.

19 Additionally: for any face σ of A′ such that Φ(M) ∩ σ 6= ∅, the
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Remark 52. The most basic of this chain of results is
somewhat believable: in Example 49, the image of the
moment map is the positive orthant in t∗. Since a general
symplectic manifold is constructed locally from that ex-
ample, the image of a general moment map is constructed
locally out of such “corners”—though amplifying this to
an equivariant statement (and then to the nonabelian
setting) is no trivial feat. The final form of the theorem
is considerably harder to visualize, but it is the version
that will concern us chiefly.

Example 53 ([30, p. 587], [31]). We focus our attention on
an example that physicists will recognize as an instance
of Yang–Mills theory. Let G be a compact connected Lie
group (e.g., SU(4)/C2) with compact simply-connected
cover (e.g., SU(4)), let Σ be Riemann sphere with b disks
excised, and let P be the trivial principal G–bundle over
Σ. The space A(Σ) of g–valued connections on P may be
identified with Ω1(Σ; g), and it can be shown to carry the
structure of a symplectic manifold using the Atiyah–Bott
symplectic form

ωAB(A1, A2) =

∫
Σ

a1 ∧ a2.

This carries a compatible action by the gauge group G(Σ)
of sections of P (i.e., G–valued continuous functions on
Σ), which has Lie algebra Ω0(Σ, g), and this action more-
over admits a moment map ΦAB determined by

〈ΦAB(A), ξ〉 =

∫
Σ

FA · ξ +

∫
∂Σ

ι∗(A · ξ),

where FA is the curvature form associated to A and
ι : ∂Σ→ Σ is the inclusion of the boundary components.
Writing G∂(Σ) for the term in the kernel sequence

1→ G∂(Σ)→ G(Σ)
ι∗−→ G(∂Σ)→ 1,

the restricted action on A(Σ) inherits the moment map
Φ∂(A) = FA, and so the symplectic reduction

M[(Σ) = A(Σ)//G∂(Σ) = A[(Σ)/G∂(Σ),

called the moduli of flat connections, inherits an action
by G(∂Σ) ∼= LGb and a moment map Φ[(A) = ι∗A.

Corollary 54 ([32, Theorem 3.2], [29, Theorem 3.16]).
The set

LogSpec{U1, U2, U3 ∈ SU(4) | U1U2 = U3} ⊂ A×3

is a convex polytope.

Construction. We set Σ = P1 \ {1, 2, 3} and G =
SU(4)/C2, then apply Example 53 to conclude that
M[(Σ) is a symplectic manifold with associated moment
map A 7→ ι∗A. Fix the following auxiliary data:

corresponding symplectic cross-section Yσ is finite dimensional
and connected, and the fibers of Φ are connected.

• Parametrizations Bj : S1 → Σ of the jth boundary
component.

• Paths γj : B1(0) → Bj(0) such that π1Σ is gener-

ated by γ−1
j Bjγj , subject to the relation

3∏
j=1

γ−1
j Bjγj = 1.

A connection A associates to these data elements
Mon(Bj) = B∗jA ∈ Lg∗, the monodromy of A about

Bj , and Γ(γj)
1
0, the action of parallel transport along γj

from the fiber over γj(0) to the fiber over γj(1).
It is well-known that the space of flat connections

on a trivial G–bundle is equivalent to the space of G–
representations of the fundamental group of the base,
which in the case of Σ is

π1Σ =

〈
b1 = B1, b2 = γ−1

2 B2γ2,

b3 = γ−2
3 B3γ3

∣∣∣∣∣1 = b1b2b3

〉
.

The procedure for extracting such a representation is by
sending a loop in the base to the monodromy of the con-
nection around the loop. One may augment this idea into
a commuting square of identifications

M[(Σ)

{
c∗ ∈ {1} ×G2

ξ∗ ∈ (Lg∗)×3

∣∣∣∣∣1 =
∏3
j=1 Adcj Mon(ξj)

}

LieG(∂Σ)
{

(ξ∗) ∈ (Lg∗)×3
}
,

Φ
Φ

where the first horizontal arrow is defined by

cj(A) = Γ(γj)
1
0, ξj(A) = B∗j (A),

the monodromy operator is defined by

Mon(ξj) =

∫
Bj

B∗j (A) ∈ G,

the second horizontal arrow is given byB∗j , and the action

of G(∂Σ) ∼= LG3 on the top-right corner is given by

g · cj = gj(0)−1cjg1(0), g · ξj = Adgj ξj − g−1
j dgj .

The meat of this proof then argues that this particular
form of the equivalence is, in fact, an equivariant sym-
plectomorphism.

Granting this, we find ourselves at the doorstep of the
multiplicative eigenvalue problem. Note first that the
operator Mon enjoys two pleasant properties:

1. After using the Killing form to identify g∗ with the
subspace g ⊆ Lg of constant loops, for h ∈ g we
have Mon(h) = exp(h), the usual Lie exponential.

2. The G–action on ξj is then arranged so that the
following formula holds:

Mon(g · ξj) = Adgj(0) Mon(ξj).
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These properties combine to give the required link. We
apply Theorem 51: take A ⊂ t∗ to be diagonal matrices
whose entries obey the criteria set out by Definition 12.
The image of the moment map then becomes those log-
arithmic spectral triples (ξ1, ξ2, ξ3) for which there exist
unitary operators c2, c3 satisfying

e−2πiξ1 = c−1
2 e2πiξ2c2 · c−1

3 e2πiξ3c3.

Remark 55. Throughout the main body of the paper,
there are two Lie groups of interest: PU(4) = U(4)/C×,
which participates in a nontrivial central extension

1→ C4 → SU(4)→ PU(4)→ 1,

and the double cover SU(4)/C2 of PU(4), which also
participates in a nontrivial central extension

1→ C2 → SU(4)→ SU(4)/C2 → 1.

In general, we may consider compact connected Lie

groups G whose universal cover G̃ participates in a fi-
nite central extension

1→ F → G̃
π−→ G→ 1.

The Lie algebras of G̃ and G may be identified by π, and
the image of the moment map ΦG considered in Corol-
lary 54 is then given by the union over f ∈ F of the im-
ages of the moment maps ΦG̃,f , constructed analogously

so as to detect products of the form U1U2 = fU3 with

U1, U2, U3 ∈ G̃.

2. Quantitative results

We now turn to quantitative results: given that the so-
lution set to the multiplicative eigenvalue problem forms
a convex polytope, what polytope is it? As in the addi-
tive case, this problem passes through representation the-
ory, and in the exposition about the qualitative problem
we have already begun to make this contact: a flat con-
nection on a trivial vector bundle is equivalent data to a
representation of the fundamental group of the base, and
flat connections modulo gauge equivalence correspond
to representations up to choice of basis. A theorem of
Narasimhan and Seshadri showed that unitary represen-
tations of the fundamental group of a compact Riemann
surface correspond to “stable” holomorphic vector bun-
dles over the surface [33]. A vector bundle V is said
to be stable when its slope, µ(V ) = deg(V )/ rank(V ),
decreases when passing to any subbundle 20, and such
bundles can be shown to admit a unique flat unitary con-
nection [34], giving one direction of the correspondence.

20 Informally, a stable bundle is “more ample” than any of its sub-
bundles.

However, our surface of interest, Σ = CP1 \ {1, 2, 3},
is a noncompact Riemann surface 21. Work of Mehta
and Seshadri extends the above correspondence to the
noncompact case: a parabolic bundle (on CP1) is a holo-
morphic vector bundle E, a choice of finite set S ⊂ CP1,
a choice of flag {Es,i} for each s ∈ S, and a list of weights
λs,j satisfying the strings of inequalities

λs,1 ≥ · · · ≥ λs,n > λs,1 − 1

and degE+λ+,+ = 0. A parabolic bundle is additionally
said to be semistable when its parabolic slope, a modifi-
cation of the slope of a holomorphic vector bundle that
is offset by the choice of weights, decreases when pass-
ing to any subbundle (and appropriately restricting the
parabolic structure). They then showed the following re-
sult:

Theorem 56 ([35]). Fix a set S and a list of parabolic
weights satisfying λs,i ∈ [0, 1) ∩ Q. The moduli space of
semistable parabolic bundles on CP1 with these weights is
a normal, projective variety, homeomorphic to the mod-
uli space of flat unitary connections over CP1 \ S such
that the monodromy operator Us at s has LogSpecUs =
(λs,i)i.

Agnihotri and Woodward note that if the moduli of
parabolic vector bundles is nonempty, then it contains
the trivial bundle with flags chosen in general position,
eliminating one source of complexity. However, what this
theorem conspicuously does not assert is when the moduli
of semistable parabolic bundles is nonempty. Their next
move is to use a complicated form of intersection theory
known as quantum cohomology both to check nonempti-
ness and to produce the bounding hyperplanes. The ul-
timate theorem statement is as follows:

Definition 57. For r, k > 0 be positive integers with
r + k = n, we define Pr,k to be the set of partitions

Pr,k = {(I1, . . . , Ir) ∈ Zr | 0 ≤ I1 ≤ · · · ≤ Ir ≤ k}.

Let Gr(r, k) be the Grassmannian of k–planes in Cn. Fix
any complete flag in Cn:

Cn = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 = {0};

then for any partition I ∈ Pr,k, we then define the corre-
sponding Schubert variety to be

σI =
{
W ∈ Gr(r, k) | dim(W ∩ FIj ) ≥ j

}
.

The Schubert cell CI ⊂ σI is the complement of all lower-
dimensional Schubert varieties contained in σI :

CI =
⋂

σJ⊂σI

σI \ σJ .

21 In fact, the fundamental groups of compact Riemann surfaces
are all known: the surface Σg of genus has fundamental group
the free group on letters a1, b1, . . . , ag , bg subject to the relation
1 = [a1, b1] · · · [ag , bg ]. There is no g for which this looks like our
desired free group on generators a, b, c subject to abc = 1.
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From these, we define Schubert cycles [σI ] and [CI ], as
well as cohomology classes TI Poincaré dual to [σI ].

Theorem 58 ([36, Theorem 5.3, Lemma 5.5]). The mod-
uli of semistable parabolic bundles with prescribed weights
λs,i is non-empty if and only if∑

s∈S

∑
i∈Is

λs,i ≤ d

for all subsets Is and integers d such that there exists a
degree d map sending s ∈ S to a general translate of the
Schubert cell CIs .

Moreover, let d be the lowest degree of any map

µ : CP1 → Gr(r, k)

sending s ∈ S to a general translate of σIs . Then qd is
the maximal power of q dividing

∏
s∈S TIs in the small

quantum cohomology ring of Gr(r, k).

It remains to give a description of quantum cohomol-
ogy and to compute the (small) quantum cohomology
ring of a Grassmannian. We follow a set of summary
lectures by Fulton and Pandharipande [37]. Beginning
with a sufficiently nice space X and for a choice of class
β ∈ H2(X), one may construct a moduli space of nodal
curves Mg,S(X,β) populated by triples (C, S, µ) consist-
ing of a projective connective nodal curve C of genus g,
a subset S ⊂ C in the nonsingular locus, and a map
µ : C → X such that µ∗[C] = β and such that µ admits
finitely many automorphisms. This space has a compact-
ificationMg,S(X), and hence its rational cohomology ac-
quires Poincaré duality and a theory of intersection [38].
Using this, we define an invariant Iβ associated to strings
of S–labeled cohomology classes

∏
s∈S γs ∈ H2∗(X):

Iβ

(∏
s∈S

γs

)
:=

∫
M0,S(X,β)

∏
s∈S

ρ∗s(γs),

where ρs is the evaluation map

ρs : M0,S(X,β)→ X,

µ 7→ µ(s).

This definition contains the following special case: using
the classes TI as a basis for H2∗(X) and writing gef for
the (operator) inverse of gef =

∫
X
Te ^ Tf , we have

Ti ^ Tj =
∑
e,f

I0(TiTjTe)g
efTf .

Motivated by this observation, we use nontrivial classes
β to define the following “deformed product”:

Definition 59. The product on H∗Gr(r, k) extends to a
commutative ZJqK–bilinear product on ZJqK⊗H∗Gr(r, k)
by the formula

Ti ∗ Tj =

 ∑
β∈H2(Gr(r,k))
β “effective”

Iβ(TiTjTe)q
∫
β
T1

 gefTf

=

(∫
Gr(r,k)

TiTjTe + Iσ1
(TiTjTe)q

)
gefTf

=:
∑
d,f

Nf,d
ij (r, k) · qdTf ,

The structure coefficients Nf,d
ij (r, k) are called quantum

Littlewood–Richardson coefficients 22.

The quantum Littlewood–Richardson coefficients are
connected to enumerative geometry, and one can use this
to calculate them directly in small-index cases; they are
connected to cohomology and so obey associativity-type
relations; and it is possible to assemble both of these
sources of information into an algorithm which recur-
sively computes them [39, 40]. Since we are specifically
interested in the case of SU(4), we produce a table of
the quantum Littlewood–Richardson coefficients appear-
ing in the products on the small quantum cohomology
rings for Gr(1, 3), Gr(2, 2), and Gr(3, 1) in Figure 10.

Altogether, these results assemble into the following
summary theorem, the form of which presented here is
due to Belkale 23.

Theorem 60 ([36, Theorem 3.1], [41, Theorem 7]). Let
U1, U2, U3 ∈ SU(n) satisfy U1U2 = U3, and let α∗, β∗,
γ∗ be the fundamental alcove sequence respectively asso-
ciated to these unitaries through LogSpec. Select r, k > 0
satisfying r + k = n, select a, b, c ∈ Pr,k, and take d ≥ 0;

then if N c,d
ab (r, k) = 1, the following inequality must hold:

d−
r∑
i=1

αk+i−ai −
r∑
i=1

βk+i−bi +

r∑
i=1

γk+i−ci ≥ 0. (*)

Moreover, given alcove sequences α∗, β∗, γ∗ for which

N c,d
ab (r, k) = 1 implies Equation (*), then there exist U1,

U2, U3 with U1U2 = U3 and

α∗ = LogSpecU1, β∗ = LogSpecU2, γ∗ = LogSpecU3.

Remark 61 ([37, Proposition 12]). In the case of a Grass-
mannian, the small quantum cohomology ring can be
fully calculated and presented in summary form:

qH∗Gr(r, k) =
Z[σ1, . . . , σk, q](

Sr+1(σ), . . . , Sn−1(σ),

Sn(σ) + (−1)kq

) ,
where Sr(σ) = det(σ1+j−i)

r
i,j=1 is a certain determinan-

tal class in the Chern classes σi = ci(ξ) of the tautological
bundle ξ over Gr(r, k).

22 For X with dimH2(X) > 1, one must introduce more than one
formal class q. After accounting for this, the definition presented
here is robust for a fairly broad class of spaces X.

23 The original Mehta–Seshadri theorem concerns unitary flat con-
nections. Belkale also produced an alternative form of their
theorem appropriate for flat connections which are special uni-
tary [41, Appendix].
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r k a b c d Nc,d
ab (r, k)

1 3 (0) (0) (0) 0 1

(1) (1) 0 1

(2) (2) 0 1

(3) (3) 0 1

(1) (1) (2) 0 1

(2) (3) 0 1

(3) (0) 1 1

(2) (2) (0) 1 1

(3) (1) 1 1

(3) (3) (2) 1 1

2 2 (0, 0) (0, 0) (0, 0) 0 1

(1, 0) (1, 0) 0 1

(1, 1) (1, 1) 0 1

(2, 0) (2, 0) 0 1

(2, 1) (2, 1) 0 1

(2, 2) (2, 2) 0 1

(1, 0) (1, 0) (2, 0) 0 1

(1, 1) 0 1

(1, 1) (2, 1) 0 1

(2, 0) (2, 1) 0 1

(2, 1) (0, 0) 1 1

(1, 1) 0 1

(1, 0) (2, 1) (2, 2) 0 1

(2, 2) (1, 0) 1 1

(1, 1) (1, 1) (2, 2) 0 1

(2, 0) (0, 0) 1 1

(2, 1) (1, 0) 1 1

(2, 2) (2, 0) 1 1

(2, 0) (2, 0) (2, 2) 0 1

(2, 1) (1, 0) 1 1

(2, 2) (1, 1) 1 1

(2, 1) (2, 1) (2, 0) 1 1

(2, 1) (1, 1) 1 1

(2, 2) (2, 1) 1 1

(2, 2) (2, 2) (0, 0) 2 1

3 1 (0, 0, 0) (0, 0, 0) (0, 0, 0) 0 1

(1, 0, 0) (1, 0, 0) 0 1

(1, 1, 0) (1, 1, 0) 0 1

(1, 1, 1) (1, 1, 1) 0 1

(1, 0, 0) (1, 0, 0) (1, 1, 0) 0 1

(1, 1, 0) (1, 1, 1) 0 1

(1, 1, 1) (0, 0, 0) 1 1

(1, 1, 0) (1, 1, 0) (0, 0, 0) 1 1

(1, 1, 1) (1, 0, 0) 1 1

(1, 1, 1) (1, 1, 1) (1, 1, 0) 1 1

FIG. 10. Structure constants in qH∗Gr(r, k) for r + k = 4.

Note Nc,d
ab (r, k) = Nc,d

ba (r, k).

Appendix B: Leaky entanglers

There is also a differential-geometric proof that
LogSpec γ(P 2

CZ) has vanishing volume which does not
rely on first knowing the precise region. The gate CZ
commutes with Z–rotations:

Zα =
Zα

Zα

=
Zα

,

from which we may conclude the following for a generic
pair of local one-qubit gates K1 and K2:

K1

K2

=
Zα Yβ Zγ

Zδ Yε Zλ

=
Zα Yβ Zγ

Zδ Yε Zλ

≡
Yβ

Yε

.

This circuit therefore traces out at most a two-parameter
subfamily of gates within the fundamental alcove, which
cannot be the image of a top dimensional set in PU(4)
and hence cannot have positive Haar volume.

This kind of argument turns out to be flexible enough
that the commutation property powering it deserves its
own name:

Definition 62. A two-qubit gate U is said to leak (on
the first qubit wire) when there are exponential families
Aθ, Bθ, and Cθ such that

U
Aθ =

.

Bθ
U

Cθ

In fact, the other two-qubit gates in the Quil standard
library are also leaky, as portrayed in Figure 11. This
table has two remarkable features: first, that there are
so many such relations, and second, that the single-qubit
rotation is always a Z. We now show that at least the
second of these is to be expected:

Lemma 63. Leakiness is invariant under ≡L. Specifi-
cally, if U satisfies

U
Aθ =

.

Bθ
U

Cθ
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iS
W

A
P Zα

=

iS
W

A
P

Zα

,

iS
W

A
P

Zα

=
Zα

iS
W

A
P

,

Zα

Zθ

=
Zα

Zθ

,

Zθ Zα

=

Zα Zθ

,

P
S
W

A
P
θ

Zα
=

P
S
W

A
P
θ

Zα

,

P
S
W

A
P
θ

Zα

=
Zα

P
S
W

A
P
θ

.

FIG. 11. Leakiness relations for the standard Quil gates

for some single-qubit exponential families A, B, C, and
if V is given by

V =
S

U
R

T R′
≡ U,

then we also have

V
Dθ =

.

Eθ
V

Fθ

for Dθ = ARθ , Eθ = BSθ , and Fθ = CTθ .

Proof. This is a direct calculation:

V
Dθ =

S
U

R Dθ

T R′

=
S

U
Aθ R

T R′

=
S Bθ

U
R

T Cθ R′

=
Eθ S

U
R

Fθ T R′

=
Eθ

V
Fθ

.

Remark 64. Suppose U is as in Lemma 63. By picking
single-qubit operators R, S, and T with

ARkθ = Zθ, BSkθ = Z`θ, CTkθ = Z`′θ,

we may replace U by V , also as in Lemma 63, for which
we then have

V
Zθ =

.

Z`θ
U

Z`′θ

In fact, if U has a second leakiness relation on the other
qubit wire, transforming the single-qubit gate A′θ into the
local operator B′θ ⊗C ′θ, one may reuse S and T : because
A⊗ 1 and 1⊗A′ commute, B⊗C and B′⊗C ′ must also
commute, which forces B and B′ (hence BS and (B′)S)
to lie in the same one-parameter family and the same for
C and C ′ (hence CT and (C ′)T ).

However, the first observation—that Smith, Curtis,
and Zeng’s standard library contains so many leaky
gates—is much more of an accident.

Lemma 65. A generic entangler does not leak.

Proof. At the level of Lie algebras, a leaky gate U satisfies

AdU (su(2)⊕ 0) ∩ (su(2)⊕ su(2)) 6= ∅,

witnessed by anti-Hermitian matrices

h =

(
c a+ bi

−a+ bi d

)
,

and

h′⊗h′′ =


(c0 + c1)i a0 + b0i a0 + b1i 0

−a0 + b0i (−c0 + c1)i 0 a1 + b1i

−a1 + b1i 0 (c0 − c1)i a0 + b0i

0 −a1 + b1i −a0 + b0i −(c0 + c1)i


which in particular satisfy

U−1

(
h 0

0 h

)
U = h′ ⊗ h′′.

Elements of this product are computed by

(h′ ⊗ h′′)i` =

1∑
p=0

2∑
j,k=1

U(2p+j)ih(2p+j)(2p+k)U(2p+k)`,

which for a fixed value of U gives a linear system of real
equations in the real unknowns specifying the elements
of su(2)⊗ 1 and su(2)⊗ su(2).
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We claim that this system is generically of full rank,
i.e., there is no solution but the trivial one. This system
drops rank only when all determinants of all maximal
subminors of the system vanish. As each determinant is
an algebraic function on the real algebraic variety deter-
mined by SU(4), if these do not all simultaneously vanish
everywhere, then they generically do not simultaneously
vanish. We therefore need only exhibit a point where the
system has full rank for the conclusion to follow. Select-
ing g =

√
iSWAP, we make the manual calculation that

the above system of equations is satisfied only for h = 0,
h′ = h′′ = 0.

Remark 66. The above mode of proof can be adapted to
show that a generic entangler U has associated set P 2

U of
positive volume. For a variable choice of entangler U , we
define an algebraic function

cov : SU(4)× (SU(2)⊗2)×3 → SU(4)

(U,A,B,C) 7→ AU−1BUC.

Fixing a value of U and reassociating, this describes a
function

covU : (SU(2)⊗2)×3 → SU(4)

(A,B,C) 7→ AU−1BUC.

The image of any smooth map, including covU , has pos-
itive volume if and only if there is a point in the domain
at which the map has full rank. In turn, if an algebraic
map, such as the unrestricted function cov, has full rank
at any point, then it has full rank almost everywhere.
Selecting U to be the B–gate [3], it is known that covB
is surjective, hence its image has positive volume, hence
there is a point x = (A,B,C) at which covB has full
rank.

That covB is of full rank is detected by the the condi-
tion that not all 15×15 minor determinants of TxcovB of
simultaneously vanish for some choice of x = (A,B,C).
Instead fixing such an x and considering these determi-
nants as a family of algebraic functions of U ∈ SU(4), we
have thus seen that they are not all simultaneously van-
ishing for the particular point B ∈ SU(4). It is then
a consequence of the real Zariski topology that these
functions are not simultaneously vanishing for a generic
choice of U ∈ SU(4).

Remark 67. On the other hand, leakiness is an essential
part of quantum error correction codes: the very defini-
tion of a nonleaky multi-qubit gate means that a locally
correctable error becomes a locally uncorrectable error
after application of the entangler. This completely in-
hibits stabilizer-type codes from functioning.
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