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Uncovering the quantitative laws that govern the growth and 

division of single cells remains a major challenge. Using a unique 

combination of technologies that yields unprecedented statistical 

precision, we find that the sizes of individual Caulobacter cres
centus cells increase exponentially in time. We also establish that 

they divide upon reaching a critical multiple (�1.8) of their initial 

sizes, rather than an absolute size. We show that when the tem

perature is varied, the growth and division timescales scale pro

portionally with each other over the physiological temperature 

range. Strikingly, the cell-size and division-time distributions can 

both be rescaled by their mean values such that the condition

specific distributions collapse to universal curves. We account for 

these observations with a minimal stochastic model that is based 

on an autocatalytic cycle. It predicts the scalings, as well as specific 

functional forms for the universal curves. Our experimental and 

theoretical analysis reveals a simple physical principle governing 

these complex biological processes: a single temperature-depen

dent scale of cellular time governs the stochastic dynamics of 

growth and division in balanced growth conditions. 
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Quantitative studies of bacterial growth and division initiated 
the molecular biology revolution (1) and continue to pro

vide constraints on molecular mechanisms (1-8). However, many 
basic questions about the growth law, i .e. , the time evolution of 
the size of an individual cell, remain (8-13). Whether cells spe
cifically sense size, time, or particular molecular features to initiate 
cell division is also unknown (14). Answers to these questions, for 
individual cells in balanced growth conditions, are of fundamental 
importance, and they serve as starting points for understanding 
collective behaviors involving spatiotemporal interactions between 
many cells (15-18). 

Cell numbers increase exponentially in bulk culture in bal
anced growth conditions irrespective of how the size of an in
dividual cell increases with time (1) .  Thus, observation of the 
population is insufficient to reveal the functional form of the 
growth law for a given condition. Bulk culture measurements 
necessarily average over large numbers of cells, which can 
conceal cell-to-cell variability in division times, sizes at division, 
growth rates, and other properties (19) .  Moreover, the cell 
cycles of different cells in the population are typically at dif
ferent stages of completion at a given time of observation. Even 
when effort is made to synchronize cells at the start of an ex
periment, so as to have a more tightly regulated initial distri
bution of growth phases, this dispersion can only be mitigated, 
not eliminated. These considerations highlight the importance 
of studying growth and division at the single-cell level. 

The landmark papers of Schaechter, Koch, and coworkers (2, 
20, 21) addressed issues of growth at the single-cell level, but the 
(statistical) precision of these measurements was not sufficient to 
characterize the growth law(s) under different conditions. There 
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is evidence that the growth laws for various microorganisms 
under favorable conditions are exponential (14, 22-25) .  However, 
both linear and exponential growth laws have been previously 
proposed (26--29), and it is estimated that a measurement precision 
of 6% is required to discriminate between these functional forms 
for cells that double in size during each division period (5) .  This 
precision is difficult to achieve in typical single-cell microscopy 
studies because cell division leads to rapid crowding of the field of 
view (30) . 

Various experimental approaches have been introduced to ad
dress this issue (25, 31-34). Conventional single-cell measurements 
on agarose pads are limited to about 10 generations, and the age 
distribution of the observed cells is skewed toward younger cells 
because the population numbers grow geometrically (35). Designed 
confinement of cells allows observation of constant numbers of cells 
without requiring genetic manipulation (25, 34). The system that we 
describe here for Caulobacter crescentus allows tracking constant 
numbers of single cells over many generations at constant (and, if 
desired, low) number densities. This setup provides the advantages 
that contacts between cells can be avoided and the environment can 
be kept invariant over the course of an experiment, such that all 
cells exhibit equivalent statistics. In fact, in control experiments with 
this setup, we observe that cells grow at reduced rates when they 
come in contact with each other. Our extensive data provide the 
statistical precision needed to transcend previous studies to 
establish the functional form of the mean growth law under 

Significance 

Growth and division of individual cells are the fundamental 

events underlying many biological processes, including the de

velopment of organisms, the growth of tumors, and pathogen

host interactions. Quantitative studies of bacteria can provide 

insights into single-cell growth and division but are challenging 

owing to the intrinsic noise in these processes. Now, by using 

a unique combination of measurement and analysis technologies, 

together with mathematical modeling, we discover quantitative 

features that are conserved across physiological conditions. These 

universal behaviors reflect the physical principle that a single 

timescale governs noisy bacterial growth and division despite the 
complexity of underlying molecular mechanisms. 
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different conditions and to characterize fluctuations in growth A 
and division. -----�---- c 
Results and Discussion 

Experimental Design. Determining quantitative laws governing 
growth and division requires precise measurement of cell sizes of 
growing cells under invariant conditions for many generations. We 
achieved these criteria by choosing an organism that permits 
control of cell density through molecular biology and microfluidics. 
The bacterium C. crescentus divides into two morphologically and 
functionally distinct daughter cells: a motile swarmer cell and an 
adherent stalked cell that is replication competent. A key im
provement over our earlier work (7, 36) is that the surface 
adhesion phenotype can be switched on-off with an inducible 
promoter. This strain, in combination with automated microscopy 
in a temperature-controlled enclosure, allows measurement of 
� 1,000 single stalked cells for > 100 generations each at con
stant low-density (uncrowded) balanced growth conditions (SI 
Text, section 1 and Fig. Sl) .  

We determine the area of  each stalked cell in  our 2D images 
with a precision better than 2% (Methods; SI Text, section 2 and 
Figs. Sl and S2) .  Because these cells are cylindrically symmetric 
around the curved longitudinal axis, the measured areas account 
for the varying width of the cell and faithfully report the cell 
volumes (Fig. S3) .  We thus use cell areas to quantify cell sizes. 
Using image processing software that we developed, we obtain 
4,000-16,000 growth curves for individual cells in complex me
dium (peptone yeast extract, PYE) at each of seven temper
atures spanning the physiological range of the organism: 14, 17, 
24, 28, 31, 34, and 37 °C . 

Cell Sizes Increase Exponentially to a Relative Threshold; Mean 

Growth Rate Determines Mean Division Time. Fig. 1 shows repre
sentative data for single-cell growth. The fact that the curves are 
straight on a semilogarithmic plot indicates that the growth law is 
exponential (see also Fig. S4) ;  this relation holds for all tem
peratures studied. In other words, each growth curve can be well 
fit by the form 

aij (t; T )  =aij (O; T )exp [Ky (T )t] , [1] 
where aij (O; T )  is the initial size of the ith stalked cell in the jth 
generation, and T is the temperature. Each growth curve yields 
a division time, Tij (T ), and a rate of exponential growth, Kij(T ) 
(Fig. 2 and SI Text, section 3.1). 

Fig. 2 shows the parameters in Eq. 1 for each growth cmve at 
each temperature. The growth and division timescales, K(1 ( T )  and 
Tij (T ) ,  respectively, vary proportionally (over about a fo�rfold dy
namic range; Fig. 2A), such that the mean growth rate and mean 
division time determine each other. This fact, together with Eq. 1, 
suggests that the initial and final sizes of the cells should also scale 
linearly with each other (with no additive offset), to be consistent 
with exponential growth. We confirm experimentally that they do 
(Fig. 2B), which further supports the exponential growth law (see 
also SI Text, section 3.2, Table Sl, and Figs. SS and S6).  

The biological significance of Fig. 2B is that cells divide when 
their sizes are a constant multiple of the initial stalked cell size. 
The existence of a relative size threshold is further supported 
by the fact that the ratio a;1 (r; T )/aij (O; T )  appears more tightly 
regulated than aij (r; T )  (Fig. S7) as their respective coefficients 
of variation (SD divided by mean) are �8% and �20%. From 
the slope of the best-fit line in black in Fig. 2B, we obtain 
(a;J (r; T )/a;1 (0; T )) � exp (0.565) = 1.76, where ( . . .  ) indicates a 
population average. This value is consistent with known aver
age ratios of stalked and swarmer cell sizes for C. crescentus (37) , 
but prior measurements could not eliminate alternative single
cell scenarios. For example, one might just as well have expected 
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Fig. 1. Cell sizes (areas, a) as functions of t ime (t). (A) Six phase-contrast images 
of a cell, a l l  taken from a s ingle generation at 1 5-min interva ls, start ing from 
10 min after the previous d ivision, are shown (respectively labeled I-VI). From such 
images, the area of each cell as a function of time is inferred from the outl ines 
ind icated. (8) The a rea is plotted as a function of t ime for many generations of 
a s ingle cel l .  The generation ind icated in tea l and by an a rrow indicates t ime 
period from which images in  A are taken.  (C) We plot measured areas on 
a semi logarithmic sca le to make the growth law evident. The data shown are 
from 5 cel ls over the course of -300 generations each in an experiment con
ducted at 24 °C in complex med ium.  More than 4,000 growth curves were 
obta ined from - 1 00 cells in this experiment; only a smal l  subset is shown here 
for cla rity. The image acqu isition rate was 1 frame per m inute. 

division at constant swarmer cell size, in analogy to budding yeast 
(14) or the model proposed in ref. 38 for symmetrically dividing 
bacteria; in that case, the points would follow a line with a slope 
of 1 and a nonzero intercept, as indicated by the red dashed line 
in Fig. 2B. An important implication of the relative size thresh
old is that there must be growth during the swarmer stage; 
whether this growth occurs throughout the swarmer stage or 
together with differentiation remains to be demonstrated. 

Mean Division Time Decreases as Temperature Increases. We plot 
the logarithm of the growth rate against the inverse temperature, 
as is common for bulk culture studies (39-41) , in Fig. 3A . For 
bulk culture studies, such plots typically deviate from a strict 
Arrhenius ltw (a straight line in Fig. 3A, corresponding to 
(K) ex (r (TW =A exp [- LIB/k8T] , where A is a temperature
independent constant, LIB is the activation energy, and ks is 
Boltzmann's constant) (40, 41) and exhibit a turnover in the 
growth rate. We do not observe a turnover in the single-cell 
growth rate over the temperatures studied, which span the 
physiological range-the mean division time decreases as the 
temperature increases over the full range (although see Ex
treme Temperatures Reinforce the Scaling Laws for a discussion 
of mortality). 

The points in the range 17-34 °C fall sufficiently near 
a straight line that one can use the data to estimate an effective 
LIB, also known as the "temperature characteristic" (39-41). We 
find LIB= 54.0 kJ /mo! (12.9 kcal/mo!), which is consistent with 
previous estimates from bulk culture measurements for several 
bacteria (42-44) . Empirical relations have been proposed to cap
ture the negative curvature in Fig. 3A, and we show the best fit of 
the form suggested by Ingraham, Ratkowsky, and coworkers (39-
41), (rf1 � (T - T0 )2 , in Fig. 3A. In that model, the "minimum 
temperature" To sets the energy scale; for our data, To = 270 K. A 
series expansion shows that values in the range 260-280 K, as 
tabulated for other microorganisms ( 40, 41 ), are consistent with 
LIB � 54 kJ/mol (see SI Text, section 4.1 for further discussion). 
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Fig. 2. Proport ional ity of the growth and d ivision t imescales; cel l  size at d i 
v is ion is a critical mu lt iple of its in it ia l  s ize .  Superposition of data from tem
peratures across the physiological ly relevant ra nge (purple, 34 °(; green, 3 1  °(; 
orange, 28 °C; blue, 24 °C; gray, 1 7  °C). There are 4,000-1 6,000 data points for 
each temperature. (A) Points are obta i ned by identifyi ng d ivision periods rij and 
fitting s ing le-cel l  growth trajectories to the exponential growth law, Eq.  1 .  The 
s lope of the best-fit l ine (shown i n  black) is 0 .565, which is equ iva lent to d ivision 
occurr ing when (a(r;T)/a(O: T)) "'exp(0.565) = 1 .76. The coefficient of de
termination for the fit is R2 = 0.98 for a l l  temperatures. (The fa int banding is 
a visua l ization artifact rather than a feature of the data.) (8) The f inal  a rea just 
before division, aij(r; T), is plotted agai nst the i n it ia l  a rea, aij(O), of each cel l .  
The data from a l l  five temperatures are scattered a round the black dashed 
stra ight line a(r; T)= 1 .76 a(O). R2 = 0.99 for all temperatures. The red dashed 
line represents d ivision at constant swarmer cel l size for comparison. 

The precise values of parameters of course depend on the tem
perature ranges used for the fits, but it is important to note that tlE 
is of the order of a typical enzyme-catalyzed reaction's acti
vation energy ( 45, 46) . 

Model for Exponential Growth. Motivated by our observations for 
the mean behaviors, we consider a simple kinetic model that was 
introduced by Hinshelwood in 1952 to describe exponential 
growth (47). This model consists of an autocatalytic cycle of N 
reactions, in which each species catalyzes production of the next 
(Fig. 4) . An important feature of this model is that the overall 
rate constant for growth (K) is the geometric mean of the rate 
constants of the elementary steps (k;) (47) (Fig. SS) :  

K = (k1kz . . .  kN)l/
N

. [2] 
Therefore, if the rates of the elementary steps vary in an 
Arrhenius fashion, the overall rate constant for growth must 
vary similarly. To see this, substitute k; (T) =A; exp [- tl.E;/k8T] 
(where A; and tl.E; are, respectively, the collision frequency and 
activation energy of reaction i) into Eq. 2: 

K(T) = (A1 . . .  AN)t/
N 

exp [ 
=A exp [- tl.E/kaT] . 

flE1 + · · · + t:,,EN] 
NksT [3] 

This equation shows that tlE is the arithmetic mean of the ele
mentary activation energies. Therefore, if each step has an acti
vation energy of the order of a typical enzyme reaction's, then so 
does the effective growth rate. This idea is consistent with our 
measurements (Fig. 3A), and is independent of the chemical 
identities of X; and the value of N. 

It is important to stress that the validity of the model and its 
conclusions are not contingent on a specific form for the tem
perature dependence. Although it is arguably easiest to see the 
averaging of the rate in the Arrhenius case considered above, it is 
generally true that the overall rate varies like the constituent 
rates. For example, if the constituent rates follow the Ratkowsky 
form (41), then the composite rate does as well, to leading order, 
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so long as the energy scales of the individual steps are not very 
disparate (SI Text, section 4.1) .  

Fluctuations i n  Cell Sizes Scale with Their Means. Given that the 
Hinshelwood cycle captures the mean behaviors that we observe, 
it is of interest to understand its implications for the fluctuation 
statistics that we can obtain from our extensive single-cell growth 
data. To this end, we recently generalized the model by assuming 
that the reactions in the cycle have exponential waiting-time 
distributions and showed analytically that its dynamics reduces to 
those of a single composite stochastic variable (48) . We term this 
model the stochastic Hinshelwood cycle (SHC). 

A key result of the model is that, asymptotically, fluctuations 
in all chemicals in the SHC (Fig. 4) become perfectly correlated 
with each other ( 48) . Thus, the SHC makes a strong prediction 
for the scaling of size fluctuations in the asymptotic limit: the cell
size distributions from all times should collapse to a universal curve 
when they are rescaled by their exponentially growing means ( 48) . 
In other words, in balanced growth conditions, the width of the size 
distribution grows exponentially at the same rate as the mean 
growth rate, K. This prediction is validated by our data in the 
Arrhenius range, as shown in Fig. SA (see also SJ Text, section 4.2) . 

The SHC also makes predictions for dynamics of growth noise 
in individual growth trajectories. To enable comparison with our 
data, we derived the equivalent Langevin description from the 
Master equation for the SHC. It is ( 48) 

da(t; T) � � = K(T)a(t; T) + 11(t; T) y a(t; T) , [4] 

where 1J is Gaussian white noise satisfying (IJ(t1; T)IJ(t2 , T) ) = 
B(T)o(t1 - t2 ) ,  which defines B(T) ( 48) . The first term on the 
right-hand side of Eq. 4 represents the systematic exponential 
growth (the "drift") and the second term is the noise (the "dif
fusion"). Eq. 4 shows that the noise increases in magnitude with 
the area (i.e., it is "multiplicative"), and it does so in proportion 
to the square root of the area. This Langevin equation contrasts 
with the well-known Black-Scholes equation for multiplicative 
noise (also known as geometric Brownian motion), which has 
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Fig. 3. Sca l i ng  of the d iv is ion-t ime d istri bution with temperature. (A) Var
iat ion of the mean d iv is ion time with tem perature (brown, 37 °C; purp le, 
34 °C; g reen, 31 °C; orange, 28 °C; b l ue, 24 °C; g ray, 1 7  °C, cyan, 1 4  °C; " I n "  is 
natura l logar ithm).  The error in the mean is less than the size of the sym bols .  
We est imate the effective activat ion barr ier to be Llf = 54.0 kJ/mol  (1 2 .9  
kca l/mol) .  Th i s  est imate comes f rom the s lope  of  the b lack  l i ne, wh ich  is f i t  to  
the data over the temperature range 1 7-34 °C (R2 = 0.97) . The  red  dashed 
l i ne  is  a fit of the Ratkowsky form, (r)-

1 � (T - T0)2 (41 ), over the enti re 
temperature range stud ied; To i s  i nferred to be 270 K. We a lso provide 
a Cels ius sca le  (Top) for conven ience; note that th i s  sca le  is  not l i near .  (8) 
Probab i l ity d istr i butions of d iv is ion t imes from d ifferent tem peratu res (col
ors a re the same as i n  A), resca led by the respective temperatu re-dependent 
mean va l ues i n  A, col l a pse to a s ingle curve (coeffic ient of var iat ion, COV, 
� 1 3 %) .  The i nva r iant shape of the d istr i bution i nd icates that a s ing le  t ime
sca le, express ib le  in terms of the mean div is ion t ime, governs stochastic d i 
v i s ion  dynamics .  
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B 

Fig. 4. H i nshelwood model for exponentia l  g rowth.  (A) Schematic showi ng 
the autocata lytic cycle, i n  which each species activates product ion of the 
next. (8) Correspond ing reactions.  The size of a ce l l  is assu med to be pro
port iona l  to a l i near combi nation of the copy num bers of the species in the 
cyc le .  I n  the SHC, the dwe l l  ti mes a re assumed to be exponentia l ly d i str ib
uted; react ion propensit ies a re ind icated above the a rrows i n  8. Note that 
the effective g rowth rate, K,  depends only on the rate constants, k; . 

been invoked to explain cell-size distributions ( 49). In the Black
Scholes equation, both the drift and diffusion terms scale linearly 
with the dynamical variable. The square root multiplicative noise in 
Eq. 4 results in the observed scale invariance of the cell-size 
distribution, and the corresponding mean rescaled asymptotic 
cell-size distribution is a gamma distribution ( 48) . In contrast, 
the Black-Scholes equation does not yield the observed con
stancy of the coefficient of variation of cell sizes, and instead 
predicts a lognormal cell-size distribution with a coefficient of 
variation that increases as ,/i. 

For a given initial cell size, Eq. 4 predicts that the square of the 
coefficient of variation of cell sizes should fall on a straight line 
when plotted against time; additionally, dimensional analysis 
dictates that the slope of this straight line should be independent 
of temperature when we rescale B (T )  by K (T )  and t by (r (T )): 

a2 (t; T )  � B (T )t �-l - [B (T) ] -t
-

(a (t; T ))2 
� 

a(O; T )  
� 

a(O; T )  (K ( T )) (r ( T ))" 
[SJ 

In Fig. SB we show that this prediction is also validated by our 
data, and that B (T )  / (K ( T )) = 0.0011. This value indicates that 
the fluctuations around each individual exponential growth curve 
are small compared with its time constant. To the best of our 
knowledge, the SHC is the only microscopic model of stochastic 
exponential growth to capture the statistics of individual growth 
trajectories that we measure (Fig. 5 A and B). 

Fluctuations in Division Times Scale with Their Means. Next, we ex
amine fluctuations in cell division times and their variation with 
temperature. We show in ref. 48 that treating stochastic division 
of cells as a first passage time problem for the cell size to reach 
a critical value gives rise to additional scaling forms. The mean
rescaled division-time distributions from all temperatures should 
collapse to the same curve, because the single timescale (K ( T )  )-1 , 
which is proportional to (r (T )) (Fig. 2), governs stochastic di
vision dynamics ( 48) . This prediction is validated by our observed 
division-time distributions from all temperatures (Fig. 3B). Spe
cifically, the SHC model predicts a beta-exponential distribution of 
division times for an absolute cell-size threshold and a given initial 
size ( 48). By convolving this result with the observed initial size 
distribution (Fig. 5), we can determine the expression for the di
vision-time distiibution for the observed relative size thresholding 
(Fig. 2B; see SI Text, section 4.3 for details) . This form provides 
a good fit of the data (Fig. 3B and SI Text, section 4.3) for all 
temperatures in the Arrhenius range (17-34 °C) . 

Extreme Temperatures Reinforce the Scaling Laws. Finally, we dis
cuss the behavior outside of the Arrhenius range. At 37 °C, there 
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is significant cell mortality. The probability of a cell surviving is 
a decaying exponential function of time, corresponding to a con
stant probability per unit time of dying of � 7% per mean cell 
lifetime (see SJ Text, section 5 and Fig. S9 for details). At all other 
temperatures (in PYE medium), cell mortality is less than 1 % for 
up to 100 generations, and we do not observe any senescence 
(i.e., systematic decrease in reproductive output with time) (50). 
Bulk-culture measurements cannot separate the contributions 
to decreased reproductive output from increased mortality and 
decreased growth rates of surviving cells. 

Remarkably, at both 14 °C and 37 °C, the single-cell growth 
law for surviving cells continues to be exponential (Fig. SlO), and 
the exponential growth timescale (K ( T )f 1 continues to scale 
proportionally with the mean division time (Fig. Sll) .  In other 
words, both growth and division slow together. Consequently, the 
final size at division also scales proportionally with the initial size 
of the cell and thus a relative cell-size thresholding scheme for 
cell division continues to hold at these temperatures. The scaling 
laws for mean-rescaled cell-size and division-time distributions 
also continue to hold for these two temperatures (SI Text, section 5 
and Fig. S l l ) .  Our results for growth at extreme temperatures 
further validate the scaling predictions and show that they continue 
to hold even when the growth rate deviates from the Arrhenius law. 

Applicability to Other Microorganisms. Although the results pre
sented here are for C. crescentus in complex medium, we expect 
them to apply to growth and division of other microorganisms in 
different balanced growth conditions. In ref. 48, we show that the 
size scaling laws follow directly from exponential growth, and, as 
noted in the Introduction, there is evidence of exponential 
growth in several microorganisms (14, 22-25) . We thus expect 
the cell-size distributions of these organisms to collapse to a 
single curve when rescaled by their means. The premise that 
size scaling generally holds for bacteria in balanced growth 
conditions was put forth long ago (51) ; however, it is important 
to note that the size distribution in earlier studies was a con
volution of our size distribution with the cell-cycle-phase dis
tribution (related to our division-time distribution) because 
the data were taken from images at single laboratmy times for 
asynchronous populations. 

The fact that effective activation energies for population 
growth are generally in the range of individual enzyme-catalyzed 
reactions' ( 45) suggests that the SHC applies broadly. Stochastic 
exponential growth implies growth dynamics with a single time
scale. The division-time distribution scales with its mean when 
the exponential timescale is proportional to the mean division 
timescale ( 48) . Clearly this need not always be the case: the DNA 
replication time is distinct from the doubling time for E. coli 

0.7 1.0 1.3 1.6 
a/(a(t)) 0.15 0.3 0.45 0.6 

t/('t(T)) 
Fig. 5. Sca l i ng  of cel l -s ize f luctuations with in  each d iv is ion per iod.  (A) The 
size (a rea) d istri butions at al l  tem peratu res (purple, 34 °(; g reen, 3 1  °(; or
ange, 28 °C; b l ue, 24 °C; g ray, 1 7  °C) are p lotted for th ree d ifferent rescaled 
t ime poi nts, at t/ (r(T)) = 0, 0.2, and 0 .6 (marked I, I I ,  and  I ll, respective ly). 
" I n "  is  natu ra l  loga rithm .  The a rea d istri butions at each t ime have been 
resca led by their exponentia l ly growing mean sizes. See also F ig . S1 2 . (8) Re
laxation of the COV of cel l size (area) after d ivision. The slope of the black 
dashed l i ne, which is fitted to data for all temperatures s imu ltaneously, is 0.001 1 .  
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under favorable nutrient conditions, as recently modeled (38). It 
remains to be determined if these two timescales change propor
tionally when temperature is varied. However, a single timescale 
could still characterize growth and division of E. coli in minimal 
medium, where replication and division frequency are approxi
mately equal. The relative size threshold for division is a pre
viously unidentified paradigm for how cell size can inform cell 
division. For exponential growth, this feature is related to the 
growth rate and the division time varying linearly with each other 
as the temperature changes; the ratio of the joint size of the 
daughter cells to the mother cell sets the proportionality constant. 

Molecular Basis. How molecular interactions set the growth rate, 
how they couple to the divisome and cell wall synthesis ma
chine1y, and how the associated network gives rise to SHC dynamics 
remain to be determined for each exponential growth condition. 
We caution against interpreting exponential growth of cell size as 
necessitating a spatially uniform distribution of active growth sites on 
the cell because polar growth of single Agrobacterium tumefaciens 
cells has been observed to be superlinear and is potentially ex
ponential (5 2). In ref. 48 , we show that complex autocatalytic 
networks can be systematically reduced to effective SHC models. 
Therefore, the scaling laws discussed here should persist in other 
conditions, even when additional molecular pathways contribute to 
setting the growth rate. Previous studies argued for an N = 2 cycle 
composed of the global production of metabolic proteins at a rate 
proportional to the numbers of ribosomal RNA and vice versa ( 2 ,  
43) , leading to  a constant ratio of  the two species (8). However, one 
should not take this model literally because metabolic proteins do 
not directly produce ribosomes. Judicious use of antibiotics and 
alternative growth media, as in refs. 4 ,  9, together with our single
cell technology, could provide important clues to contributing bio
chemical reactions for a given condition. 

Conclusions 

The preponderance of recent work on bacterial growth in single
cell studies has focused on bottom-up explorations of specific 
regulatory networks (53) , and some simple empirical laws con
necting global gene expression patterns with the growth state of 
the cell have emerged (9, 10). The complementary, top-down 
approach of using observations at the organismic level to deduce 
constraints on microscopic models ( 2 ,  3, 20 , 21) has been less 
popular in the last few decades. In this paper we have taken the 
latter approach but now with the advantage of being able to 
acquire and analyze large datasets. We have observed robust 
scaling laws for cell growth and division, in addition to the ob
servation of exponential growth of mean single-cell sizes .  To 
summarize, these single-cell scaling laws are as follows. i) 
The growth law is exponential during balanced growth under 
favorable nutrient conditions. ii) The mean division time is 
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proportional to the inverse of the mean growth rate. iii) The size 
of the cell at division is proportional to the initial size of the cell. 
iv) The mean-rescaled division-time distribution is temperature 
invariant. v) The mean-rescaled cell-size distribution from all 
times and temperatures is invariant. vi) The coefficient of vari
ation of cell sizes, for a given initial cell size, scales as the square 
root of time. 

To the best of our knowledge, the SHC is the simplest model 
that captures all these behaviors, not just the trends of the means 
but also those of the fluctuations. Additionally, we showed that 
the averaging of the rate constants in the Hinshelwood cycle can 
account for the energy scale implied by the temperature de
pendence of the mean growth rate, which is on the order of 
a single enzyme-catalyzed reaction's activation energy. However, 
we emphasize that the variation in Fig. 3A is not itself a scaling 
law and only serves to "calibrate" how the absolute unit of time 
(the mean division time) varies with the external parameter 
(temperature); the scaling laws enumerated above are insensitive 
to the form of the temperature dependence. Our data and the 
SHC ( 48) show that stochastic growth and division are governed by 
a single timescale, which, in tum, depends on the growth conditions. 
This simple design principle is unexpected given the complexity of 
a whole organism. 

Methods 

The exper i mental techn iques developed here enab le stud ies of i nd iv idua l  
non interact ing ce l l s  i n  we l l -control led environments for  > 1 00 generations. 
We have generated a stra i n  i n  which the only funct iona l  copy of the ho ldfast 
synthesis A (hfsA) gene, which contro ls  featu res requ i red to adhere to sur
faces, is i nteg rated at a s ing le  chromosoma l  locus under the control of a n  
i nduc ib le  promoter. A s  a resu lt, w e  c a n  i n it i a l ly i nduce holdfast product ion 
unt i l  we have the desi red n u m bers of ce l l s  stick ing to the g lass surface of the 
m icrofl u id i c  device and  then f low away the rema i n i ng ce l l s .  Once the ex
peri ment commences, the i nducer is  removed and newborn daughter cel ls, 
upon d ifferentiation, do not express funct iona l  hfsA and a re thus unab le  to 
stick and are f lowed away. This prevents the crowd ing  of the f ie lds of v iew 
that occu rs in typica l exper iments with exponent ia l  g rowth .  

We use phase-contrast imag ing  to accu rately measure g rowth frame-by
frame, i nstead of just d iv is ion events. In a typical  exper iment, data from 20 
u n ique f ie lds of view are acqu i red at a rate of each f ie ld per m i n ute (rough ly 
1 00,000 i mages in 3 days). F i na l ly, we have developed custom software us ing 
a combi nation of MATLAB and  Python for automated image process ing,  
which is  necessary for extract ing quantitative i nformation from these ex
tensive data (- 1 06 images for each tem perature stud ied). See SI Text, sect ion 
1 for further deta i ls . 
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1 .  Experimental Methods 

1 . 1 .  Cloning of the Mutant Strain, FC1 428. C. crescentus strain CB15 
naturally adheres to surfaces via an adhesive polysaccharide 
termed a holdfast; production of holdfast requires the hfsA gene 
(1) .  Strain NAlOOO is a laboratory-adapted relative of CB15 and 
bears a frameshift mutation in hfsA, rendering cells nonadhesive 
(2) . We cloned the functional hfsA(CB 15) allele into pMT-862 
(3) and integrated it into the NAlOOO chromosome at the vanA 
locus, under a vanillate-inducible promoter. The resultant strain, 
FC1428, only gains the ability to adhere to surfaces when ex
posed to vanillate. Cells are induced with 0.5 mM vanillate for 
3 h before introduction into the microfluidic device; they are then 
allowed to adhere to the glass interior of the device. Vanillate
free media is then flowed over the cells for the remainder of the 
experiment; induction of hfsA(CB J 5) does not occur in newborn 
cells, which do not adhere and are thus washed out of the mi
crofluidic chamber. This inducibly sticky strain allows for long 
experimental run times, as a constantly adherent strain would 
rapidly crowd the field of view with daughter cells produced over 
many generations. 

1 .2. Growth Protocol. For each experiment, individual colonies of 
FC1428 were selected from a fresh PYE-agar plate containing 
kanamycin (5 µg/mL) and grown overnight in PYE medium in 
a 30 °C roller incubator, taking care to ensure that the culture 
was in log phase. This culture was diluted to OD660 = 0 . 1  with 
fresh PYE and 0.5 mM vanillate and was induced for 3 h before 
being loaded onto the microfluidic channel in the previously 
temperature-stabilized chamber. PYE is a complex medium and 
its detailed composition is provided in ref. 4. 

1 .3. Microfluidic Device and Single-Cell Assay. See Fig. Sl  for details 
of the microfluidics, optics, and image processing aspects of the 
experimental setup. Y-shaped microfluidic channels were fabri
cated and prepared as described in ref. 5. After thermal equili
bration, the FC1428 bacterial cell culture was loaded into 
a single channel and incubated for 1 h. Typically enough cells 
stuck to the glass surface of the device after a 1-h period of in
cubation for the subsequent imaging experiment. The remaining 
cells ( i .e . ,  those that were not adherent) were then washed off 
in the laminar flow of the microfluidic device. Two computer
controlled syringe pumps (PHD2000, Harvard Apparatus) pum
ped thermally equilibrated PYE media through the channel at 
a constant flow rate (7 µL/min) .  

1 .4. Time-Lapse Microscopy. The imaging process was automated 
such that the imaging, stage positioning, illumination, syringe 
pumps, and readout from the array detector were fully computer 
controlled and could operate autonomously throughout experi
ments of many days. Time-lapse single-cell measurements were 
performed on an inverted microscope (Nikon Ti Eclipse) equipped 
with a motorized sample stage and a controller (Prior Scientific 
ProScan III) .  Phase-contrast microscopy was performed with 
a Nikon Plan Fluor lOOx oil objective, a 2.5x expander, and 
a mercury fiber illurninator (Nikon C-HGFI). A computer-con
trolled shutter (Lambda SC) was used to coordinate light exposure 
and image acquisition. The image was collected on an electron 
multiplying charge coupled device detector (EMCCD, Andor 
iXon+ DU888 1024 x 1024 pixels) . To ensure thermal stability, 
the microscope and syringe pumps were enclosed by a home-
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made acrylic microscope enclosure (39" x 28" x 27") heated with 
a closed-loop regulated heater fan (HGL419, Omega) . A 
uniform temperature was maintained by a proportional integral 
derivative temperature controller (CSC32J, Omega) coupled 
with active airflow from two small-profile heater fans inside the 
enclosure. For experiments carried out below 20 °C, the tem
perature in the entire room was lowered to 6 °C and the afore
mentioned enclosure that includes the microscope was heated. 
Phase-contrast images of multiple fields of view were recorded at 
1 frame per minute and the focus adjusted automatically using 
the built-in "perfect focus system" (Nikon PFS). A Virtual In
strument routine (LabView 8.6, National Instrument) was used 
to control all components (sample stage, autofocus, pumps, 
EMCCD, and shutter) and to run the experiment for extended 
periods of time (5-12 days) .  

1 .5. Image Analysis and Construction o f  Growth Curves. The acquired 
phase-contrast images were processed by identifying each 
C. crescentus cell in MATLAB (MathWorks) and tracking the 
cells over time using custom code written in Python. The cross
sectional areas of each cell measured through a sequence of 
images were used to determine growth curves. From these data 
division events were identified. We chose to only include cells 
that divided for more than 10 generations in our subsequent 
analysis. 

2. Cell Size Determination and Precision 

Typical Gram-negative bacteria have cylindrical rotational sym
metry around their anterior-posterior axes. In C. crescentus, the 
symmetry is around a curved axis because the cells are crescent 
shaped. As shown in Fig. S3, we have verified that the growth of 
the cell is predominantly along the longitudinal direction, by 
evaluating the curved midcell axis (the bisector of the observed 
area of the cell); this length itself grows with the same expo
nential growth rate as we deduce from the area. However, 
quantifying cell size by the straight-line length joining the ante
rior-posterior extremities of the cell instead would lead to an 
accumulation of errors because it ignores the inhomogeneous 
width of the cell perpendicular to this line, in the plane of ob
servation. We use area because it obviates this problem and af
fords us an order of magnitude better precision. We expect the 
area to reflect the volume faithfully because cells are cylindri
cally symmetric and their lengths grow exponentially with the 
same time constant as the area. 

Using a combination of thresholding the absolute intensity and 
ridge detection algorithms, the (pixellated) boundary of each cell 
was identified, frame by frame. Cell area was quantified by 
counting the total number of pixels inside the boundary for each 
cell in each frame. We compute the precision of our measure
ments in several different ways. First, we vary the threshold for 
cell edge detection over a 10% range ( ± 5% of the value used for 
all image analysis) and find that the area of each cell is changed 
by �2% at the beginning of each cell cycle; this number de
creases further as the cell grows . Second, we perform control 
experiments with more frequent sampling (30 frames per min
ute) and use bootstrapping methods to estimate the error bars on 
the precision of our single-cell measurements in our experi
ments, which are performed at 1 frame per minute. Third, we 
examine the fluctuation in the areas of cells that do not grow 
during the course of the experiment but are not dead (a condi
tion that is controlled by the media), at 1 frame per minute. The 
measurement uncertainty of a single-cell area is <2%. Because 
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we obtain between 4,000 and 16,000 growth curves at each 
temperature, the ensemble-averaged mean area at a given in
stant of time has an uncertainty of <0.03%.  

The division times are taken to  be  the minima of  the area vs. 
time curves. We estimate that the error in division times is less 
than 2 min (twice the inverse frame rate) . Because the coefficient 
of variation (ratio of the SD to the mean) of the division-time 
distributions at all temperatures is �o.13 (see the following 
section), the SE in the mean division times at each temperatures 
(with 4,000-16,000 points) is 0.01-0.03 min. 

3. Determination That the Growth Law Is Exponential 

3.1 . Fitting Individual Trajectories. The Langevin model for sto
chastic exponential cell-size growth is given by Eq. 4 of the main 
text and is used to find the correct procedure for ensemble av
eraging the growth curves to obtain the time evolution of the 
mean cell size, i .e . ,  the growth law(s). Upon integrating this 
equation, 

l 

e-K(T)t/2 )a (t; T ) - )a (O; T )  = � j dt'e-K(Tl1'/217 (t' ) . 
0 

[Sl] 

Thus, the time evolution of the square of the ensemble-averaged 
mean of the square root of the size is exponential: 

( Ja(t; T )  ) 2 
= ( Ja (O; T) /e'(TJt . [S2] 

Using this result, at each temperature we fit the growth data for 
each generation, Ja (t; T )  vs. t, with the best exponential fit, to 
find K/2 and thus K. 

Because the mean and SD of the growth rates and division 
times evaluated by considering different generations of the same 
cell were equal to the same quantities evaluated across different 
cells at a given generation, the ergodic condition that ensemble 
averaging equals generational averaging holds for these data. 
Therefore, we do not see a systematic change in the reproductive 
output of a given cell from generation to generation, under these 
growth conditions. 

A related issue is that of intergenerational correlations in these 
quantities. We find that there is a small but observable anti
correlation between the initial size of the cell and its division time 
at the end of that generation (but no correlation between the 
initial size and the growth rate) at all temperatures. This mild 
anticorrelation serves to restore the (absolute) size of a cell to the 
ensemble average and prevents "runaway" cells, i .e. , larger 
(smaller) than average cells from getting progressively larger 
(smaller), compared with the ensemble mean, due to noisy rel
ative size thresholding at division. 

3.2. Distinguishing Between Functional Forms. Which functional 
form best fits the ensemble-averaged mean growth law, i .e. , the 
increase of mean cell size with time in balanced growth con
ditions, has been debated. The two main contenders are the linear 
and exponential forms (6-9). 

An important reason why ascertaining the growth law, beyond 
a reasonable doubt, has been an experimental challenge is be
cause extraordinary (statistical) precision is required to distin
guish an exponential from a straight line when each growth period 
is less than the time constant of the exponential. This can be seen 
by estimating the minimum precision required for discriminating 
between the two functions, by considering the geometrical aspects 
of exponential and linear curves for a given mean growth period 
(r) ,  and a relative division threshold B =. (a (T) ) / (a (O))  (10) [Fig. 
2B (main text) and Fig. S7] . The time at which the exponential 
curve deviates most from the straight line is then found to be 
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1 [B - 1] Tm = (r)
ln B ln 

ln B · (83] 

The maximal difference between the predicted sizes for the expo
nential and linear models (�amax) is thus the difference between 
the sizes predicted using each model at time Tm : 

Thus, the minimum precision of measurement required to dis
tinguish between these models is determined by whether 
�amax » ()(Tm)  or not, where ()(f) is the SD in a observed at 
time t .  Scaling �amax by the predicted size at rm for the ex
ponential model and defining/ ( B) = ( B - 1) /ln B, we thus arrive 
at the minimum precision required for distinguishing between the 
two models. 

. . . . (a (O) ) (T) [l +f(B) (ln(f(B) ) - 1) ]  
mm1mum prec1s1on = (a (O) ) [ (T) + rm (B - l) ]  

1 +f(B) [ln(f(B) ) - 1] 
1 + f ( B)ln(f ( B) ) [SS] 

The required precision is �4% for a division size ratio of B = 1.8, 
as is observed in our experiments. Because error in our mean 
area measurements is less than 0.03%, we can indeed unequiv
ocally distinguish between exponential and linear growth. 

To quantify the goodness of fit for both the exponential and 
linear fits, and to establish that the statistically preferred model is 
the exponential one, we use the following prescription. We recall 
that the ensemble-averaging procedure that correctly accounts for 
the cancellation of the noise contribution from 17 (t) , for the model 
of stochastic growth proposed, is to find the root-mean-square of 
the area (Va\i)) 2 at each observation time (a noise model with 
additive noise or linear multiplicative noise is contradicted by the 
scaling of cell-size distributions observed). In this ensemble
averaging procedure, no ad hoc subtraction of or division by the 
initial size to de-trend the noise is necessary. If the growth law 
were linear rather than exponential, then ( Va\i)) 2 should fit 
better to a model that is of the form ct + d, where c and d are 
parameters of the linear model. The exponential fit has x2 � 50 
for all temperatures (Table Sl) ,  compared with x2 � 1 , 000 for 
the best linear fits (Table Sl) .  Because both models, exponential 
and linear, have the same number of degrees of freedom, two 
fitting parameters each (i.e., the mean initial size and the mean 
growth rate), the Akaike information-theoretic criterion index 
(AIC) (11) for each is simply given by its respective x2-value. 
Clearly the x2-value for the exponential model is much smaller 
than that for the linear growth model. However, we can use the 
AIC to determine the relative likelihood that the linear model is 
the correct description of da�a, not th

.
e exponential. Usin� 

exp [(AICexp - AICtin) /2] , we fmd that 1t ranges from 10-7 
to 10-soo for the different temperatures (the variability in the 
value coming from the differences in total numbers of growth 
curves at each temperature) . Therefore, statistical measures of 
model selection overwhelmingly favor the exponential form. 

We note that the residuals for the exponential fit in Fig. SSC have 
additional structure, not fully explained by a model that assumes 
a constant (time-independent) mean growth rate. We believe that 
the systematic behavior in the residual for the exponential fit sug
gests that there may be a small growth phase (cell age) dependence 
to the growth rate, reflecting specific underlying growth-division 
processes, such as restructuring of the cell for formation of end caps 
and the constricting of the division plane; this is an interesting av
enue for future inquiry. Here, we have used the constant growth 
rate model because it is the most economical model to explain the 
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overwhelming majority of observations. We thus conclude that the 
growth law for these cells, under the conditions described in the 
text, is exponential. 

We note that a formal comparison with other growth laws 
is also possible. The exponential fit compares favorably with a 
quadratic function (the simplest higher-order polynomial) too. 
Geometric considerations similar to those detailed above indicate 
that the minimum precision required to discriminate between 
exponential and quadratic growth laws is �0. 1 %, which is within 
our statistical precision. The best fits for the quadratic have 
coefficients for the quadratic term that are approximately equal 
(within a factor of 1 .2-1 .5 times) to the quadratic coefficient of 
the series expansion of the exponential function. To quantify the 
statistical significance of the goodness of each fit, we have used 
the Bayesian information criterion (BIC) (12), a common in
formation-theoretic measure for weighing models with different 
numbers of fitting parameters (the quadratic has one additional free 
parameter over the exponential). The BIC for the quadratic fit is 
greater than that for the exponential by more than 11,  which is very 
strong evidence against the quadratic. In summary, the quadratic fit 
is comparable in quality to the exponential fit but has an additional 
free parameter, and we thus favor the exponential. 

4. Fitting the Data 

4.1 .  Mean Division Times. The mean values of the division times at 
34, 31 ,  28, 24, and 17 °C are 56, 72, 76, 98, and 201 min, re
spectively. In the main text we show that, if the individual rates 
of the Hinshelwood cycle exhibit an Arrhenius temperature de
pendence (in general, with different activation energies), the 
overall growth rate (equal to the geometric mean of the in
dividual rates) varies similarly with temperature, with an effec
tive activation energy equal to the arithmetic mean of the 
individual barrier heights. The argument can be generalized to 
other functional forms for the temperature dependence of the 
mean growth rate (or division rate) . Specifically, if the individual 
rates instead follow the Ratkowsky form, k; (T) � (T - T0 )2 (13, 
14), where T is absolute temperature and To is a parameter of 
the empirical relation, we find by calculating the geometric mean 
of the individual rates that the overall growth rate K (T ) has the 
following temperature dependence: 

� (T - (To ) )2 . [S7] 
Thus, provided that the SD of the individual values of To is small 
compared with their mean value, to leading order, the effective 
growth rate also scales as a Ratkowsky form, with the effective 
minimum temperature parameter equal to the arithmetic mean 
of the individual values, irrespective of the number of steps in 
the Hinshelwood cycle, up to leading order in temperature. We 
note that no restriction on llE; is required for Eq. 3 of the main 
text to hold in the Arrhenius case. 

4.2. Size Distribution. The distribution of cell sizes, under balanced 
growth conditions, is predicted to be a gamma distribution (15) . 
We rescale the initial size distributions at all temperatures 
by their mean values (note that these distributions undergo 
a scaling collapse and thus have the same shape), and the 
resulting scaled distributions collapse to a single gamma dis
tribution with a mean of 1. The only parameter of the distri
bution left to be determined is the (dimensionless) shape 
parameter; the value that we obtain for it by fitting is 16. Thus, 
we obtain the mean-rescaled initial size distribution P(a (O) ) , 
where a (O) :: a (O) / (a (O) ) .  
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4.3. Division-Time Distribution. The first passage time distribution 
(i.e., the division-time distribution) for a cell that grows from an 
initial size a (O) to when it reaches a multiple B of its initial size 
Ba (O) , is a beta-exponential distribution (15) , 

- (K (T) )e-a(O) (K(T) )< ( 1 - e- (K(T) )<) (11-l)il (O) 
P(r la (O))  = 

beta [a (O) , ii (O) (B - 1 ) ] ' [SS] 

where beta is the beta function. Note that B, the multiple of the 
initial size to which each cell grows, was observed to be �1 .76, on 
average (see main text and Fig. S7). The mean growth rate (K (T) )  
i s  known from observations at each temperature (Table Sl) .  
Moreover, the initial size distribution P(ii (O) ) has also been de
te1mined (see above) . Therefore, the division-time distribution, 

P( r) = / dii (O)P(ii (O))P( r la (O) ) ,  [S9] 

can be computed at each temperature without any additional fit
ting parameters. 

For the fit in Fig. 3B of the main text, we restricted ourselves to 
data within ±20% of the mean growth rate because events out
side of this range correspond to biological phenomena not in
cluded in the simple model (which assumes a constant growth 
rate), such as cells that become filamentous. However, these 
outliers are included in the scatter plots in Fig. 2 A and B. The 
coefficient of variation (ratio of the SD to the mean) of the di
vision time distributions at all temperatures in the Arrhenius 
range (17-34 °C) is �13%. 

5.  Scaling Behaviors Beyond the Arrhenius Range 

As discussed in the main text, we have performed single-cell 
experiments at 37 °C and 14 °C, temperatures that are, re
spectively, higher and lower than the Arrhenius range ["normal 
temperature range" (16)] for the mean growth rate, to investigate 
scaling behaviors at these extreme physiological temperatures. 
We have obtained data for between 2,000 and 4,000 generations 
(growth curves) for both conditions. We find that the single-cell 
growth law remains exponential for both these temperatures (Fig. 
SlO). The mean division time observed at 37 °C is 54 min and at 
14 °C, 319 min; in contrast, if they had followed the Arrhenius law 
(Fig. SllC), these values should have been �44 min and �37 
min, respectively. Thus, the division rate observed at both tem
peratures is significantly slower than predicted by the Arrhenius 
law. However, the mean growth rate (of surviving cells) slows 
down proportionally (Fig. Sl lA); as a result (r) and (K -1 ) continue 
to scale linearly with each other, as they do in the Arrhenius range. 
Moreover, the initial cell size remains proportional to the size of 
the cell at division even outside the Arrhenius range; at 37 °C the 
mean value of the relative size threshold is 1 .8 at both temper
atures (Fig. SUB).  Further, the mean-rescaled division-time dis
tribution from 14 °C undergoes the same scaling collapse as the 
remaining temperatures in the Arrhenius range (Fig. SlW) but 
the distribution at 37 °C is slightly more noisy with COY �15%. 
We believe that this additional stochasticity, compared with other 
temperatures, is related to the onset of cell mortality-we observe 
significant mortality at 37 °C and the increased filamentation rate 
at this temperature. In Fig. S9 we show that the survival proba
bility S(t) of a cell at 37 °C is an exponential function of time, 
S(t) �e-v1 • By fitting the observed survival distribution, we esti
mate that v, the probability per unit time that a cell may die, is 7% 
per mean duration of a generation (54 min). The mean-rescaled 
cell-size distributions from different times, at both temperatures, 
undergo scaling collapses, as predicted by the SHC. We see an 
increase in the initial cell size at both extreme temperatures, 
compared with the temperatures in the Arrhenius range; at 
present, we do not have an explanation for this observation. 
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Fig, 51. Schematic of the exper imental setup .  (A) The m icrofl u id i c  device (A1 )  creates a constant perfus ion environment with i n  the channe l  where imag ing  
occu rs (A2); there is  cont in uous f lu id  exchange through the output (A3) .  It consists of  four  i nd iv idua l  channels, wh ich  are connected to  cap i l l a ry tub ing to 
create a sealed envi ronment. I nputs of two d ifferent media may be connected at the upstream end .  (8) The exper imental appa ratus. Each syr inge is  attached to 
a sepa rate syr inge pump to a l l ow m idexper iment switch ing between media (B1 ); images a re obta i ned us ing a Nikon Ti-E microscope with autofocus (B2), which 
compensates for focal  dr i ft as the robotic XY stage ho ld ing the m icrofl u id i c  device (B3) moves between mu lt ip le  f ie lds of v iew with in  the m icrofl u id i c  channe l  
dur ing  the cou rse of long-term exper iments. (84). Each component is  contro l l ed by a custom LabVIEW program that completely automates the process of  data 
acqu is it ion after the exper iment has been set up. (C) Image process ing workflow. An examp le  of the raw data (1 ,024 pixel x 1 ,024 pixel), a phase-contrast 
i mage, is shown in (C1 ) .  Each image is then processed with the goal  of accu rately and robustly detect ing cel l  edges (C2) . Featu res a re then identified (C3) :  the 
processed images are th resholded to extract ce l l  a reas (wh ite), and the poi nt on each ce l l  peri meter closest to the holdfast (red) is assumed to represent a near
stat ionary point and  used to track cel ls  (Le. ,  to ma inta i n  ce l l  identity between every frame of the movie). A typical  ce l l  trajectory obta ined with the above 
a lgor ithm is shown (C4). 

A B 

20 40 60 
t (min) 

80 

Fig. 52. From raw images to g rowth cu rves. Phase-contrast i mages such as the one shown in A a re obta i ned for each f ie ld of view, for each t ime poi nt, for an  
exper iment a t  a g iven tem perature.  The  pixe l l ated boundary (shown i n  red) of  each ce l l  i n  each frame is  extracted by  custom image  process ing a lgorithms, 
which com bine the absol ute i ntens ity level, the spatia l  grad ients of the i ntens ity levels, and a f ina l  th resho ld ing step.  By l i n king  a sequence of processed 
i mages, we obta i n  a rea val ues as a funct ion of t ime (8) for each generat ion of each cel l .  The cu rves in 8 are p lotted with t set equa l  to 0 at the beg i nn i ng  of 
each generation .  Data shown are from 5 cel l s  (248 generations tota l) from an exper iment performed at 31 °C. 
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Fig. S3. Exponent ia l  g rowth of the long itud ina l  length of the cel l .  Data shown are from 5 cel l s  (248 generations tota l) from an exper iment performed at 31 °C. 
Here we see that /(t), the long itud ina l  length of the cel l ,  g rows exponentia l ly with t ime t as evidenced by the stra ight l i nes on the sem i l og p lot shown. " I n "  
stands for t h e  natural  logar ithm .  
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Fig. S4. Alternative representat ion of exponentia l  g rowth .  The rate of change of the logar ithmic  size is p lotted as a funct ion of t ime .  For an exponentia l  
g rowth law, these cu rves shou ld  be para l le l  to the  t ime axis, and  the va lue of  the  vertica l-axis i ntercept measu res the g rowth rate K fo r  a cel l .  If the  g rowth law 
were l i near, the s lope of th i s  l ine should change by a factor of 2, which it does not. (A) Each color represents data from one sta l ked cel l ,  averaged over al l  its 
generations. This averag ing  is  denoted by ( . . .  )gen · Data shown a re from the exper iment performed at 1 7  °C. Because the autocorrelation t imesca le  in the 
g rowth cu rves was est imated to be � 1 5 min at th is  tem peratu re, we consider t ime poi nts sepa rated by 20 min (>correlation t i me) to eva l uate the change i n  the 
loga rithm ic  size, so as to ensure statist ica l  i ndependence of successive poi nts. (8) Averag ing  for a representative cel l :  we show the 20 generations that con
tr ibuted to the black cu rve i n  A.  " I n "  denotes the natural  loga rithm .  

a((T)) 

a(O) 

Tm 
Time 

(T) 

Fig. SS. Schematic i l l ustrat ing the cha l lenge of d iscri m i nating exponentia l  and l i near models .  For a ce l l  g rowi ng from an i n it ia l  s ize, a(O), to a m u lt ip le  e of the 
i n it ia l  s ize, i . e. , lia(O), the l i near (b lue) and the exponent ia l  (red) f its (both pass ing through the i n it ia l  and f ina l  poi nts) maxi ma l ly d iffer at a t ime rm and the 
magn itude of the maxi ma l  d ifference is  !J.amax. The measurement precis ion has to be better than /J.amax for model selection (between l i near and exponentia l)  
to be feasi b le .  See SI Text, sect ion 3 .2  for d i scussion .  
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Fig. 56. Exponent ia l  vs. l i near fits for the g rowth law. Exper imental data (green) are fit by (A) red, exponentia l  and (8) b lue, l i near funct iona l  forms. (C) 
Res idua ls  for exponentia l  (red) and l i near (b lue) fits of the root-mea n-square g rowth curve for fits in A and 8. Data a re for 1 7  °C (- 1 0,000 i nd iv idua l  g rowth 
cu rves contr ibut ing) .  See SI Text, sect ion 3 .2  for d iscuss ion .  
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Fig. 57. D istr i butions of the relative size th reshold at d ifferent tem peratures. The probab i l ity d istr ibut ion of the relative size i ncrease of each ce l l  at d ivis ion, 
i .e . ,  the rat io of size at d iv is ion to i n it ia l  s ize, a (<) /a (O), i s  shown for al l  generations and al l  tem peratu res i n  the Arrhen ius  ra nge {purple, 34 °C; g reen, 31 °C; 
orange, 28 °C; b l ue, 24 °C; g ray, 1 7  °C). This p lot shows that the d istr i butions undergo a sca l i ng  col l a pse. The mean va lue  is 1 .76 and the COV is -8% .  
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Fig. SS. The H i nshelwood cycle  yie lds exponentia l  g rowth with a rate equa l  to the geometr ic mean of constituent rates. I l l ustrative example  with an N = 8  
H i nshelwood cyc le (F ig .  4, ma in  text). (A) Schematic react ion network correspond ing  to the cyc le .  (8) The rates can be col lected i n  a matrix, K I n  th is  notat ion 
(1 5), each react ion X;_1 -+ X;_1 + X; proceeds with rate I;j.,, Kij Xj, where x; is the copy n u m ber of species X;, Kij = k; 6;-i ,j, and o i s  the Kronecker delta; the i ndex 
O is eq u ivalent to N, c los ing the cyc le .  (C) The eigenva l ues of K defi ne the vertices of a regu l a r  polygon (here, an  octagon, ind icated by brown and b lue f i l led 
ci rcles) i n  the comp lex plane. The eigenval ues .:!; are obta ined from the roots of the cha racter ist ic equation, det l K  - ,\ � I =  0, or equ iva lently .:t8 = k1 k2 . . .  k8. Th us, 
there is a lways only one rea l positive root (b lue), which has a magn itude equa l  to K (1 5). This e igenva lue  domi nates the asym ptotic dynam ics and leads to 
exponentia l  g rowth of a l l  x; with g rowth rate K (Eq.  2, ma in  text). 

lyer-Biswas et al. www.pnas.org/cgi/content/short/1403232111 6 of 8 



-7 

-8 

-9 

- 10 

500 1500 2500 
t (min) 

Fig. 59. Survival proba b i l ity d istr ibut ion at 37 °C. The survival probab i l ity S(t) is observed to be an exponent ia l  d istr ibut ion (stra ight l i ne  on a log-l i near p lot}; 
S(t) - e-"', where v is the probab i l ity per un it t ime that a ce l l  d ies, fits to 7% per mean du ration of the generation of a ce l l  (54 m i n} .  Data are from 241 ce l l s .  
" In"  denotes the natu ra l  logar ithm .  
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Fig. 510. Exponentia l  g rowth at extreme temperatures. The s ing le-ce l l  g rowth law is  observed to be exponentia l  (for survivi ng cel l s} even at extreme tem
peratures: 14 °C (A) cyan and 37 °C (B) brown . Log- l i near p lots of the ce l l  sizes as funct ions of time a re shown . G rowth data shown are for 80 generat ions for 
each cond it ion .  " I n "  denotes the natural  loga rithm .  
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Fig. 51 1 .  Sca l i ng behaviors at extreme temperatures. Data shown a re from 1 4  °C (cyan} and 37 °C (brown}, respectively, from 2,000 and 4,000 g rowth cu rves, 
with 50-200 t ime poi nts each . Data from temperatu res in the Arrhen ius  ra nge a re shown in g ray for comparison (compare with F igs .  1 -3 in the ma in  text}. (A} 
L inear sca l i ng  of the d iv is ion t imesca le  with the g rowth t imescale; the s lope of the best-fit l i ne  (dashed black} is 1 .8 .  (B) Relative size th resho ld ing  of s ing le  cel ls; 
the slope of the best-fit stra ight l i ne  (dashed black} is  1 .8 .  (C} B reakdown of Arrhen ius  sca l i ng  of the mean div is ion rate, at extreme temperatures. The Ar
rhen ius  and Ratkowsky fits (F ig .  3A. ma in  text} a re shown for compar ison.  (0) The mean-resca led d iv is ion-t ime d istri butions at both these tem peratu res a re 
super imposed on those from temperatu res in the Arrhen ius  range.  " I n "  denotes the natu ra l  logar ithm .  

lyer-Biswas et  al. www.pnas.org/cgi/content/short/1403232111 7 of 8 



Fig. 512. Superposit ion of cu rves I (red), II (b lue), and I l l  (green) from F ig .  5A. 

Table 51. Parameters and goodness of fit measures for exponential and linear models of 

growth 

r(°C) Nens { (y'ao°}2 (µm2 ), (K) (m in-1 ) } { c(µm2 ) ,d(m in- 1 ) } X�xp xtn Improbab i l ity index 
1 7  9,634 { 1 .6,0.0028} { 1 .6,0.005} 50 2,200 1 . 0 x 1 0-soo 
24 4,224 { 1 .7,0.0058) { 1 .6,0 .0 1 2} 52 1 ,200 1 . 0 x  1 0-200 
28 4,769 { 1 .6,0.0075}  { 1 .6,0 .0 1 5} 56 1 ,300 1 . 0 x 1 0-300 
3 1  1 5,240 { 1 .6,0 .0078} { 1 .6,0 .0 1 5} 5 1  1 ,900 1 . 0 x  1 0-400 
34 1 3,340 { 1 .6,0.0099} { 1 .6,0 .0 1 9} 32 1 ,400 1 . 0 x 1 0-300 

Col u m ns are temperatu re, T(°C), the n u m ber of g rowth cu rves, Nen" the exponentia l  model fit parameters 
{ (v'aQ)2 (µm2 ), (K) (m in-1 )} ,  the l i near model fit parameters, {c ( 11m2 ) ,d ( m i n-1 )} ,  the x2 va lue  for the exponen
t ia l  fit, the x2 va lue  for the l i near f it ,  and the im probab i l ity i ndex for the l i near f it .  
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