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Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and
that their size distributions collapse to a single curve when rescaled by their means. An analogous result
holds for the division-time distributions. A model is needed to delineate the minimal requirements for these
scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master
Equation that accounts for these observations, in contrast to existing quantitative models of stochastic
exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the
stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species
catalyzes the production of the next. By finding exact analytical solutions to the SHC and the
corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential
growth and division. The model makes minimal assumptions, and we describe how more complex reaction
networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic
processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance,
technology, and population growth.
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Discovering unifying physical principles that transcend
the complexity of specific biological systems is a funda-
mental goal of the field of biological physics [1,2].
Quantitative analyses of gene regulatory networks have
revealed general connections between network motifs,
fluctuations in the dynamics of participating molecules,
and biological functions at the molecular scale [3–6].
Analogous quantitative relationships governing behaviors
at the organismal scale are just beginning to emerge [1,7,8].
In particular, in a recent experiment, we found that
scaling laws governed the stochastic growth of individual
Caulobacter crescentus cells [9]. In the same study, the
sizes of the cells were shown to increase exponentially
between divisions, consistent with observations for other
microorganisms [10–13].
Exponential growth is ubiquitous and has been studied

in diverse contexts [11,14]. It describes inflation of the
universe, geometric multiplication of an entity of interest
(e.g., nuclear or cellular fission), and phenomenological
dynamics (e.g., the Black-Scholes equation for options
prices; Moore’s law for computer processor power). Many
such processes are inherently stochastic, with the times
between contributing events drawn from waiting-time dis-
tributions [15]. Surprisingly, given its prevalence, there is no
microscopic model for stochastic exponential growth. While
various other physical aspects of cell growth have been
examined previously [16–20], a theory relating the statistics
of the stochastic exponential growth to essential features of
the biochemical networks underlying growth is needed.
A phenomenological model of stochastic exponential

growth, a Langevin equation with linear drift and linear

multiplicative noise, was famously applied by Black and
Scholes to explain financial data on stock options prices; it
forms the basis of modern quantitative derivative trading
[21]. This model, also known as geometric Brownian
motion (GBM), has since been used extensively in various
cellular contexts, and when applied to cell growth, it
predicts a log-normal cell size distribution [22].
However, in this model, the standard deviation grows
faster than the exponentially growing mean such that the
ratio, i.e., the coefficient of variation (COV), increases as
the square root of time. This prediction is in disagreement
with observations in [9], wherein the COVof cell sizes was
found to be time invariant.
Here, we provide a microscopic theory of stochastic

exponential growth that yields the universality of fluctua-
tions during the growth of single bacterial cells, observed in
[9]; it also agrees with the aforementioned observed con-
stancy of the COV with time. This microscopic theory is
built on the assumption that growth is governed by an
autocatalytic cycle of reactions. We argue a posteriori that
this is the minimal model consistent with the observations in
[9]. Furthermore, we provide a theoretical framework for
examining stochastic cell division and show how scale
invariance of division time distributions arises. We also
discuss why the essential features of the model are retained
even when more complex network topologies govern cell
growth.
Stochastic Hinshelwood cycle.—Our stochastic theory

builds on a simple deterministic (kinetic) model introduced
in 1952 by Hinshelwood [23]. In this model components of
the cell that govern cell growth are connected through an
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autocatalytic cycle of reactions in which each species
catalyzes the production of the next [Fig. 1(a)]. The mass
(or equivalently, the size) of a cell is assumed to be
proportional to a linear combination of the copy numbers
of the species in the cycle. We construct a stochastic
generalization of this cycle, by assuming that the waiting
times for the individual reactions are exponentially dis-
tributed, i.e., that the reactions are elementary. We refer to
this model as the stochastic Hinshelwood cycle (SHC). In
general, the SHC contains N species, fX1; X2;…; XNg.
The scaling laws that we derive do not depend on their
identities or N. The mean rate of production of Xi is kixi−1,
where xi−1 is the copy number of Xi−1 (Fig. 1). For use
below, we write this rate as a matrix multiplication:
kixi−1 ¼

P
N
j¼1Kijxj, where K is the rate constant matrix

with elements Kij ¼ kiδi−1;j, and δ is the Kronecker delta.
In this notation, the reaction scheme is

Xi−1 ⟶

P
N
j¼1

Kijxj
Xi−1 þ Xi; ð1Þ

for 1 < i, j < N; the index 0 is equivalent to N, closing
the cycle.
We denote the state of the general N-step SHC model by

the vector x≡ ðx1; x2;…; xNÞ, where xi is the copy number
of Xi present at a given time. The corresponding Chemical
Master Equation [15,24] for the time evolution of the
probability distribution, Pðx; tÞ, is

∂P
∂t ¼

XN
i;j¼1

Kijxj½Pð…; xi − 1;…Þ − Pð…; xi;…Þ�: ð2Þ

From (2), we derive the time evolution equations for the
moments of x from the eigenvalues and eigenvectors for K.
SinceK is a cyclic matrix of period N, KN ¼ k1k2…kN1≡
κN1 [15], and the eigenvalues of the rate constant matrix
are theN complex roots of unity times κ, the geometricmean
of all the rates. The mth eigenvalue is λm¼κexpði2πm=NÞ,
and the qth component of the corresponding eigenvector

is ξðqÞm ¼ ðQq
p¼1 kpÞ=λqm. λN ¼ κ is the eigenvalue with the

largest positive real part; thus, the time scale that dominates
the asymptotic dynamics is κ−1.
Time evolution of the mean copy numbers.—The

Chemical Master Equation dictates that the (ensemble
averaged) mean copy numbers of the reactants μðtÞ evolve
with time according to dμ=dt ¼ KμðtÞ [15]. The formal
solution to this equation is μðtÞ ¼ expðKtÞμð0Þ, or, equiv-
alently, μmðtÞ ¼

P
N
i;j¼1 UmieλitU−1

ij μjð0Þ, where U is the
matrix of eigenvectors U ¼ ½ξ1ξ2…ξN � [15]. In the asymp-
totic time limit (i.e., when t ≫ 1=κ),

μqðtÞ ∼
XN
i¼1

UqNU−1
Niμið0Þeκt: ð3Þ

Thus, the mean copy numbers of all reactants evolve
asymptotically as eκt. Moreover, the dependence on initial
conditions for μqðtÞ is independent of q. It follows that the
ratio of any two mean copy numbers μqðtÞ=μrðtÞ is equal to
UqN=UrN , which is independent of initial conditions and
depends only on the qth and rth components of the Nth
eigenvector, ξN .
Time evolution of growth fluctuations.—To examine the

time evolution of growth fluctuations, we determine the
equation of motion of the covariance matrix Cij ≡
½hxixji − hxiihxji� [15]. In matrix form,

d
dt

CðtÞ ¼ KCðtÞ þ CðtÞK⊤ þ d
dt

ΞðtÞ; ð4Þ

where ⊤ denotes the transpose and ΞðtÞ is an N × N
diagonal matrix with entries ΞijðtÞ ¼ δijμjðtÞ. We have
computed the exact analytical solution for the time evolu-
tion of the covariance matrix [25]. In the asymptotic limit,

CijðtÞ ∼ UiNUjNe2κt
XN
p¼1

bpμpð0Þ; ð5Þ

where bp is a coefficient that depends only on the rates and
not the initial conditions [25]. Thus, Cij scales as e2κt for
all i and j. Moreover, the time-independent prefactor of
element Cij of the covariance matrix is proportional to
UiNUjN . Combining (5) with (3) gives
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FIG. 1 (color online). Stochastic Hinshelwood cycle. (a) Sche-
matic of the cycle. An example with three chemical species
(N ¼ 3) is shown. The curved arrows indicate that the production
of each species Xi is catalyzed by the previous one Xi−1 with rate
kixi−1, where xi−1 is the copy number of Xi−1. The box shows the
corresponding reactions explicitly [see (1) for the general
specification with N species). (b) Stochastic exponential growth
trajectories for the model shown in (a). A single composite
time scale emerges asymptotically: x1, x2, and x3 all grow with
the same exponential growth rate κ ¼ ðk1k2k3Þ1=3, which is the
mean slope for each curve in the log-linear plot, for t ≫ 1=κ. We
show the evolution of the three species for 100 stochastic
trajectories. They are obtained from Gillespie simulations [24]
of (2) for rate constants k ¼ ð0.1; 1.5; 3.2Þ and initial copy
numbers xð0Þ¼ð20;20;30Þ.
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Cov½xiðtÞ=μiðtÞ; xjðtÞ=μjðtÞ�=σiσj ∼ 1; ð6Þ

where σi is the standard deviation of the rescaled varia-
ble xi=μiðtÞ.
An important consequence of (6) is that asymptotically

all xi are proportional to each other, since two stochastic
variables can be perfectly correlated only when they are
linearly related [15]. Thus, the ratio of any two of them
must asymptote to a time-independent constant value in
each ensemble member [i.e., each cell; see Fig. 2(a)], but
this value itself has a distribution across different members.
We note that xiðtÞ and xjðtÞ themselves continue to
fluctuate in each stochastic realization even as their ratio
tends to a constant value.
Scalings of the size distribution.—Two different scaling

laws are encapsulated in (6). First, every rescaled variable
xi=μiðtÞ has the same distribution in the asymptotic limit.
Second, since eκt is a scaling variable, the distribution
shape for each xi is invariant with time, even as its mean
increases exponentially. Therefore, the nth moment of xi
goes as enκt.
For clarity, we explicitly compute the size distribution

for the case when all rate constants in the model are equal,
with value κ. In this case,K becomes a circulant matrix, and
the projection of the state vector x onto the asymptotically
dominant eigenvector ξN reduces to a simple sum of the
constituent copy numbers, s≡P

N
i¼1 xi. This variable s

itself undergoes dynamics governed by a N ¼ 1 SHC.
Then, Pðs; tÞ for the initial condition Pðs; t ¼ 0Þ ¼ δs;s0 , is
the negative binomial distribution,

Pðs; tjs0; 0Þ ¼
�

s − 1

s0 − 1

�
ðe−κtÞs0ð1 − e−κtÞs−s0 : ð7Þ

This result can be verified by direct substitution into (2).
In the continuum limit for s, (7) tends to a gamma
distribution, since the negative binomial distribution can
be written as a Poisson mixture of gamma distributions
[26]. Asymptotically,

Pðs; t → ∞js0; 0Þ ¼
ss0−1e−ðs0sÞ

s−s00 Γðs0Þ
: ð8Þ

For the general case with unequal rates, the analog of s is
the linear combination of fxig that is defined by the
projection of the state vector along the eigenvector corre-
sponding to the largest eigenvalue, κ: sN ≡P

N
i¼1 U

−1
Nixi. As

shown in Fig. 2(b), all si ≡P
N
j¼1 U

−1
ij xj for i ≠ N vanish in

the long-time limit, and the only contributions to fluctua-
tions in each xi come from sN . As a result, all xi=μi are
distributed in the same fashion as s in (8) (Fig. 3), with
s0 ¼ sNð0Þ. In other words, the mean-rescaled distribution
of cell sizes must fit the same gamma distribution at
all times.
Division as the first passage time to a size threshold.—

We assume that cell division occurs when the cell size s
reaches a threshold [9,13]. In general, this threshold can
be absolute (s itself attains a critical value), relative (s
increases by a critical multiple), or differential (s increases
by a critical amount). In the absence of additional feedback
mechanisms, the scaling derived above implies that the
different components of the SHC maintain their predivision
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FIG. 2 (color online). Copy number fluctuations are perfectly
correlated in the asymptotic limit. (a) Ratios of the copy numbers
of the components of the N ¼ 3 SHC from the trajectories shown
in Fig. 1(b). As predicted by (6), for t ≫ 1=κ, the ratios of the
different xi tend to constant values in each ensemble member, a
signature of the perfect correlations between component copy
numbers in the asymptotic state. (b) Emergence of a single
composite variable. The variable si is the projection of the state
vector x onto the ith eigenvector (ξi) of the rate constant matrix,
K. We see that s3 here (or more generally, sN) tends to a constant
nonzero level, while the remainder of the projections vanish.
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FIG. 3 (color online). Universality of growth fluctuations. The
symbols mark the numerically obtained distributions of copy
numbers, rescaled by their means, for the trajectories shown in
Figs. 1(b) and 2, at the time indicated by the brown dotted line in
the inset (κt ¼ 3). The analogous distribution for the composite
stochastic variable, s3 (the projection of the state vector onto the
dominant eigenvector), is also shown. The black dashed curves
are the gamma distribution in (8). The inset superimposes the
composite stochastic variable (gray curves) on the trajectories in
Fig. 1(b). The fact that the trajectories do not converge or diverge
with time in this representation also indicates that the distribu-
tions of all the xi are time invariant asymptotically when these
variables are rescaled by their exponentially growing means.
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ratios, not just in the mean, but also in their fluctuations.
Moreover, the thresholding prescription (absolute, relative,
or differential) can be applied to any one component of the
SHC. All remaining components of the SHC, as well as the
total size, will simply follow because they are perfectly
correlated.
For an absolute size threshold, the first passage time

distribution PðτÞ can be determined from the fraction of
trajectories crossing the threshold (θ) in a given time
interval (τ to τ þ Δτ), by utilizing the fact that the
stochastic size variable is monotonically increasing:

PðτÞ ¼ ∂
∂τ

�Z
∞

θ
dsPðs; τÞ

�
: ð9Þ

Substituting (8) into (9), we find that the first passage time
distribution from a given initial size s0 to an absolute
threshold θ is a beta-exponential distribution [27],

PðτÞ ¼ κe−s0κτð1 − e−κτÞθ−s0
Bðs0; 1þ θ − s0Þ

; ð10Þ

where B is the beta function. The first passage time
distributions for differential or relative size thresholds
can be found using this expression.
Scalings of division times.—Since τ always occurs as κτ

in (10), we can rescale time by κ−1, or, equivalently, by hτi,
to obtain a universal scale-invariant shape of the division
time distribution. A complementary translational collapse
of PðτÞ is obtained when τ is shifted to τ − logðθ=κÞ,
provided that θ ≫ s0. The scale invariance of first passage
time distributions is more universal than (10); a similar
scaling collapse of the division time distribution will be
obtained whenever a single time scale dominates the
dynamics, regardless of the thresholding scheme (i.e.,
absolute, relative, or differential). Operationally, this implies
that if κ is varied by changing an external parameter (e.g.,
nutrient quality, oxygen concentration, osmotic pressure, or
temperature), the mean-rescaled division time distributions
for different values of κ should collapse to the same curve, as
observed in [9].
Extensions of the SHC model.—More complex autocat-

alytic network topologies can be specified by augmenting
K in (1) by additional nonzero entries. In this case, the
characteristic polynomial that determines the (complex)
eigenvalues λ of the augmented reaction matrix is [28]

X
cycles

�
κcycle
λ

�
Ncycle ¼ 1: ð11Þ

In other words, a complex autocatalytic network can be
factorized into irreducible cycles, each withNcycle members
[29]. κcycle is the geometric mean of rates of a given cycle.
Since there is always one cycle with all N members, the
order of the polynomial is N. The largest κcycle determines

which cycle dominates the asymptotic dynamics; the linked
members of that cycle specify an effective SHC, and
remaining species entrain to its stochastic exponential
growth dynamics. Thus, all the SHC scaling predictions
continue to hold for more complex topologies [28].
Discussion.—In this Letter, we have introduced the

stochastic Hinshelwood cycle (Fig. 1), a model of stochastic
exponential growth. Its dynamics naturally lead to the
emergence of a single composite growth variable with a
single time scale, thus yielding scaling collapses for size
and division time distributions (Figs. 2 and 3), as observed in
[9]. Moreover, this model explains the observed Arrhenius
scaling of the exponential growth rate [9,30–32]: since the
effective exponential growth rate is the geometric mean of
the individual rates, the effective activation energy barrier is
the arithmeticmean of the individual ones, and, thus, of the
order of a single enzyme reaction’s, i.e., ≈13 kcal=mol [9].
Unlike GBM, the SHC model predicts that the ratio of

the standard deviation to the mean (COV) of cell sizes is
asymptotically a constant, in agreement with observations
in [9]. This can be directly seen from (6), or by writing
down the phenomenological Langevin description corre-
sponding to the SHC: ds=dt ¼ κsðtÞ þ ffiffiffiffiffiffiffiffi

sðtÞp
ηðtÞ (η is

standard delta-correlated Gaussian white noise), whose
solution is the gamma distribution in (8) [33,34]. In
contrast, GBM has a noise term sðtÞηðtÞ in the variables
above and results in a log-normal size distribution [22] [35]
with an asymptotically diverging COV (∼

ffiffi
t

p
).

The differences in the predictions of the twomodels (SHC
vs GBM) have important implications. In favorable chemo-
static conditions, bacterial cells grow exponentially at a
constant rate. The single-cell analog of this “balanced growth
condition” is that the mean-rescaled cell-size distributions
remain invariant, even as the cells grow and divide. This has
been observed in [9], and is obtained from the SHC but not
GBM. In the SHC the scaling collapse of cell-size distribu-
tions reflects the statistical self-similarity of the underlying
stochastic process, which ensures constancy of COV.
The success of the SHC raises the question of its

molecular origin. As discussed, a complex autocatalytic
network governing cell growth can be systematically
reduced to an effective SHC, with an exponential growth
rate determined by a subset of connections. Moreover, the
mechanics of cell wall synthesis must be coupled to cell
growth via the regulation of number density of active
growth sites by a component of the SHC [37]. Previous
studies have found indirect evidence that there are two key
steps governing bacterial growth: the global production of
proteins at a rate proportional to the numbers of ribosomal
RNA and vice versa [31,32]—in essence, an N ¼ 2

stochastic Hinshelwood cycle [11]. It would be interesting
to test these ideas directly by designing perturbations that
give rise to N-dependent transients.
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