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An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying

time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry

breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single

molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergence

between trajectory probability distributions of an experiment and its time-reversed conjugate. Among

other interesting properties, the length of time’s arrow bounds the average dissipation and determines the

difficulty of accurately estimating free energy differences in nonequilibrium experiments.
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In our everyday lives we have the sense that time flows
inexorably from the past into the future; water flows down-
hill; mountains erode; we are born, grow old, and die; we
anticipate the future but remember the past. Yet almost all
of the fundamental theories of physics—classical mechan-
ics, electrodynamics, quantum mechanics, general relativ-
ity, and so on—are symmetric with respect to time reversal.
The only fundamental theory that picks out a preferred
direction of time is the second law of thermodynamics,
which asserts that the entropy of the Universe increases as
time flows towards the future [1]. This provides an orien-
tation, or arrow of time, and it is generally believed that all
other time asymmetries, such as our sense that future and
past are different, are a direct consequence of this thermo-
dynamic arrow [2,3].

When the dissipation, or the total increase in entropy, is
large, the orientation of time’s arrow is self-evident. If we
watch a movie in which shards of pottery jump off the
floor, assemble themselves into a cup, and land on a table,
then clearly someone has threaded the film through the
projector backwards. On the other hand, if the dissipation
is microscopic, then the distinction between past and future
becomes nebulous. This is because a more general state-
ment the second law claims the dissipation is positive on
average, h�Stoti � 0 [4,5]. If we repeat the same experi-
ment many times, the entropy might increase or decrease
on different occasions. Only the average dissipation must
be positive. Thus, if we view a movie of a microscopic
system undergoing a dissipative transformation, we cannot
determine with certainty whether time moves forward or
backwards.

Here, we seek a quantitative measure of time asymmetry
in a driven microscopic system such as the single molecule
RNA pulling experiments explained in Fig. 1. Naively, one
might use the average dissipation for this quantification,
but we will show that a large average dissipation can arise

for dynamics that are essentially time symmetric. Instead,
we develop a measure based on the Jensen-Shannon diver-
gence between the forward and reverse probability distri-
butions of trajectories for a microscopic system. We find
that this measure of time’s arrow has intuitive physical and
information theoretic interpretations and constrains the
minimum average dissipation. Moreover, recent advances
in far-from-equilibrium statistical physics allow one to
measure time’s arrow in real world experiments.
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FIG. 1 (color online). In this Letter, we discuss the definition
and measurement of time asymmetry in microscopic systems.
(a) As a concrete example, we analyze the time asymmetry of a
single molecule experiment in which an RNA molecule is
attached between two beads [29]. One bead is captured in an
optical laser trap that can measure the applied force on the bead.
The other bead is fixed to a piezoelectric actuator. The control-
lable parameter � is the distance between the fixed bead and the
center of the laser trap. For the forward protocol, the RNA
hairpin is initially in thermal equilibrium in the folded state
with extension �ðaÞ. The extension is then increased to �ðbÞ,
unfolding the RNA. In the conjugate, time-reversed protocol, the
RNA is initially in thermal equilibrium in the unfolded state, and
the extension is lowered from �ðbÞ back to �ðaÞ, allowing the
RNA to refold [29–32]. (b) Histograms of work measurements
for folding and unfolding an RNA hairpin at three different rates.
Observations are binned into integers centered at 1kBT intervals.
Note that Eq. (6) predicts that the folding and unfolding work
distributions cross at the free energy change.
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We consider a physical system driven from thermal
equilibrium by an external perturbation. For such an ex-
perimental protocol, � denotes a set of controllable pa-
rameters �ðtÞ for t 2 ½a; b� which describe how the system
is driven from the initial equilibrium at �ðaÞ. We are also

interested in the conjugate time-reversed protocol ~� in
which the system begins in thermal equilibrium at �ðbÞ
and the controllable parameters retrace the same series of
changes, in reverse, back to �ðaÞ. In the single molecule
experiments of Fig. 1, the distance between the center of
the laser trap and the fixed bead plays the role of �ðtÞ. For
each realization of the forward protocol �, the system
travels along a trajectory x which represents the states
xðtÞ for t 2 ½a; b�. We define a conjugate time-reversed
trajectory ~x such that ~xðtÞ ¼ xðtÞ for t 2 ½b; a�.

We quantify the intrinsic time asymmetry of a driven
system as the distinguishability of conjugate forward and
reverse experiments. Given a microscopic trajectory x, can
we tell if it was generated by the protocol �, or whether it
is the time reversal of a trajectory generated by the reverse

protocol ~�? Specifically, we define the time asymmetry A
as

A½�� � JSðP½xj��;P½~xj~��Þ; (1)

in which P½xj�� and P½~xj~�� are the probabilities of tra-
jectories during the forward and reverse protocol, respec-
tively, and JS is the Jensen-Shannon divergence between
two probability distributions [6–10]:

JS ðp; qÞ ¼ 1

2
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(2)

Each of the two summands is the relative entropy (or
Kullback-Leibler divergence) between one of the distribu-
tions and the mean of the two distributions. Hence,
JSðp;qÞ � 0 and is equal to zero only if the two distribu-
tions are identical: pi ¼ qi for all i [11]. The Jensen-
Shannon divergence reaches its maximum value of
ln2 nats [i.e., 1 bit], if the two distributions do not over-
lap, piqi ¼ 0 for all i, and therefore are perfectly
distinguishable.

The Jensen-Shannon divergence has a direct interpreta-
tion in terms of a Bayesian inference problem [8]. Suppose
we are given a sample k taken from one of two probability
distributions, p or q. With no other way to distinguish
between the distributions, the prior probability for the
distributions is PðsÞ ¼ f12 ; 12g, in which s represents either

p or q. The prior distribution of outcome k is therefore
PðkÞ ¼ 1

2pk þ 1
2qk, while the posterior distribution is
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�
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The information gained about s from observing state k is
the relative entropy between the posterior and prior distri-

bution. This information averaged over the prior distribu-
tion of outcomes is

h�Ii ¼ X

k

PðkÞ�I ¼ X

k

PðkÞX
s

PðsjkÞ lnPðsjkÞ
PðsÞ : (4)

Some elementary algebra reveals that this average infor-
mation gain is equal to the Jensen-Shannon divergence,
h�Ii ¼ JSðp; qÞ. Hence, the time asymmetry A½�� is the
average gain in information about the orientation of time’s
arrow obtained from one realization of the experiment.
Moreover, the square root of the Jensen-Shannon diver-
gence is a metric between probability distributions [8,9].
Consequently, the square root of the time asymmetryffiffiffiffiffiffiffiffiffiffiffi
A½��p

measures the distance between the forward and
reverse protocols in trajectory space, literally the length
of time’s arrow.
In addition to its information theoretic interpretation, the

time asymmetry can be measured in experiments due to
recent advances in far-from-equilibrium statistical physics.
In particular, the ratio of the probability of a trajectory
during the forward protocol P½xj�� and the probability of

its conjugate trajectory on the reverse protocol P½~xj~�� is
[12]

P½xj��
P½~xj~�� ¼ e�W½xj�����F½��; (5)

in which � ¼ 1=kBT, T is the temperature of the environ-
ment in natural units (kB is the Boltzmann constant),
W½xj�� is the work performed on the system during the
forward protocol � [5,12,13], and �F½�� ¼ F�ðbÞ � F�ðaÞ
is the difference in Helmholtz free energy between the
initial and final ensembles. Equation (5) is a direct conse-
quence of the time reversal symmetry of the underlying
dynamics [12] and implies the work fluctuation theorem

PðþWj�Þ
Pð�Wj�Þ ¼ e�W���F; (6)

in which �F � �F½��. Moreover, Eq. (5) gives that the
time asymmetry is

A½�� ¼ 1

2

�
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�

�

þ 1

2

�
ln

2

1þ expð��W½~xj~�� � ��FÞ
�

~�
; (7)

a nonlinear average of the forward and reverse dissipation.
Time asymmetry is also closely related to the efficiency

with which the free energy can be estimated from nonequi-
librium measurements of the work. To determine �F from
experimental realizations of the forward and reverse pro-
tocols, Bennett’s method gives the log likelihood of the
free energy difference as [14–17]
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‘ð�FÞ ¼ XK
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ln
1

1þ e��W½~xjj~�����F
: (8)

Here,W½xij�� andW½~xjj~�� are the work measured during

the i and j realizations of the forward and reverse proto-
cols, respectively. The maximum likelihood estimate

�F̂ ¼ argmax ‘ð�FÞ has the minimum variance among
all estimators of �F [14,16,17]. Comparing Eqs. (7) and
(8), the time asymmetry can be estimated with the Bennett
likelihood in the large sample limit, [18,19]

A½�� � 1

2K
‘ð�FÞ þ ln2: (9)

Thus, we can simultaneously estimate �F and the time
asymmetry by maximizing A½�� with respect to �F.

It is enlightening to contrast the length of time’s arrow
with the hysteresis, the average dissipation of the forward
and reverse protocols,

h½�� ¼ 1
2�hW½xj��i� þ 1

2�hW½~xj~��i~�: (10)

Because of Eq. (5), the hysteresis is also a divergence
between the forward and reverse trajectory distributions
[20–24]

h½�� ¼ 1
2JeffreysðP½xj��;P½~xj~��Þ; (11)

in which

Jeffreys ðp; qÞ ¼ X

i

pi log
pi

qi
þX

i

qi log
qi
pi

(12)

is the Jeffreys J divergence (or symmetrized Kullback-
Leibler divergence) [25,26]. In Fig. 2, we plot time asym-
metry against the hysteresis for single molecule RNA pull-
ing experiments at three different rates (see Fig. 1). Both
the hysteresis and length of time’s arrow increases as the
pulling rate increases; however, we will show that this need

not always be the case. For comparison, we also display the
time asymmetry A½�� in the linear response regime. The
work distributions are normal with variance twice the
average dissipation [5].
The relative values of time asymmetry and hysteresis are

bounded by several inequalities. Taneja demonstrated that
A � h=4 using convexity arguments [27]. Figure 2 shows
that this bound is obeyed by the linear response calculation
and the experimental data. For large values of the hystere-
sis, we can derive a tighter bound than Taneja. Since the
function fðxÞ ¼ lnð1þ e�xÞ is convex, Jensen’s inequality
[11] implies that hlnð1þ e�xÞi � lnð1þ e�hxiÞ. Thus,

JSðp; qÞ ¼ 1
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pi ln
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2
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� ln

2

1þ expð� 1
2 Jeffreysðp; qÞÞ

; (13)

in which the last line follows by a second application of
Jensen’s inequality. Here DðpkqÞ ¼ P

ipi logpq=qi is the

relative entropy. Hence, A � ln½2=ð1þ e�hÞ�, which we
show in Fig. 2 for large h.
However, there is no lower bound to the time asymmetry

given the hysteresis. A system can be almost time sym-
metric but exhibit a large average dissipation. To illustrate
this situation, imagine that occasionally, while gently un-
folding an RNA hairpin, the RNA becomes stuck in a
tangled configuration that resists being pulled apart by
force. While most repetitions of the experiment give a
work measurement very close to the free energy change
W � �F, for the rare instances of entanglement the work
is very large W � �F. The normalized distribution of
dissipation D ¼ W � �F for the forward process may
well be approximated as
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FIG. 2. The squared length of time’s arrow A [Eq. (1)] versus the hysteresis h [Eq. (10)], the dissipation averaged across a conjugate
pair of forward and reversed experiments. The experiment is explained in Fig. 1. We equalize the number of data points between
conjugate experiments, estimate the free energy from the data, obtain error bars by applying a Bayesian bootstrap [33], and apply a
correction for experimental errors, as described in [14]. The slower the experiment is performed, the closer to thermodynamic
reversibility, the lower the dissipation, and the lower the time asymmetry. The slowest experiments are known to contain the greatest
experimental error [14], which may explain the deviation of the slowest data from the linear response trend.
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PðDj�Þ ¼ ð1� pÞNð �D0; �
2
0Þ þ pNð �D1; �

2
1Þ; (14)

in whichNð�;�2Þ denotes a normal distribution with mean
� and variance �2. The second term corresponds to the

rare events, so p � 1 and �D1 � 1. The work fluctuation
theorem [Eq. (6)] implies that the dissipation of the reverse
process is

PðDj~�Þ ¼ ð1� qÞNð�2
0 � �D0; �

2
0Þ þ qNð�2

1 � �D1; �
2
1Þ;

(15)

in which q ¼ p expð� �D1 þ �2
1=2Þ and normalization re-

quires that

ð1� pÞ expð� �D0 þ �2
0=2Þ þ p expð� �D1 þ �2

1=2Þ ¼ 1:

(16)

The linear response regime corresponds to p ¼ 0 with
�D0 ¼ �2

0=2: For small p and relatively small variance,

we almost never see rare trajectories on the reverse proto-

col with a negative dissipation � �D1 since q will be ex-
ponentially smaller than p � 1. The values p ¼ 0:1,
�D1 ¼ 150, �D0 ¼ 0:2, and �2

0 ¼ 1 give h ¼ 7:8 and A ¼
0:1 (marked in Fig. 2), so a system with small time asym-
metry can have a large hysteresis. While Eq. (5) shows that
dissipation measures the time-symmetry breaking of indi-
vidual trajectories [20,24,28], the average dissipation is
sensitive to unusual events and is not a reliable measure
of time asymmetry for the entire system.

One interpretation of relative entropy, and therefore
Jeffreys divergence, is that it represents an encoding cost
[11]. If we encode messages using an optimal code for the
message probability distribution qi, but the messages ac-
tually arrive with probabilities pi, then each message, on
average, will require an additional Dðp k qÞ bits to encode
compared to the optimal encoding. Analogously, the hys-
teresis represents a cost, the entropy lost to dissipation.
Thus, the time asymmetry A measures the extent of time-
symmetry breaking and the average dissipation measures
the price paid.

The interrelation between time asymmetry and dissipa-
tion may be important for molecular motors and other
macromolecular biological machinery. One of the central
imperatives of any life form is to make tomorrow look
different from today. On the molecular level, this requires
rectifying the ever present thermal fluctuations. Since the
horizontal axis in Fig. 2 represents dissipation in units of
kBT, it takes about 4–8kBT of free energy per cycle to
ensure that a machine mostly advances forward in time,
assuming it stays in the linear regime. This is a substantial
fraction of the energy budget available from the hydrolysis
of an adenosine triphosphate (ATP) molecule, about 20
kBT.
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