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Fisher information is an important concept in statistical estimation theory and information theory, but it has re-
ceived relatively little consideration in statistical physics. In order to rectify this oversight, in this brief note I will
review the correspondence between Fisher information and áuctuations at thermodynamic equilibrium, and discuss
various applications of Fisher information to equilibrium and non-equilibrium statistical mechanics.

Given a family of probability distributions p(x|λ) that vary
smoothly with a parameter λ, then the Fisher information [1]
is deàned as

I(λ) =
∑
x

p(x|λ)

(
∂ lnp(x|λ)

∂λ

)2

(1)

=

⟨(
∂ lnp(x|λ)

∂λ

)2
⟩

Since the mean of the “score function” ⟨∂ lnp/∂λ⟩ is zero
(See appendix), it follows that the Fisher information is the
variance of the score.

The Fisher information is also equal to the negative mean
second derivative of the score, under certain conditions (See
appendix).

I(λ) = −

⟨
∂2

∂λ2
lnp(x|λ)

⟩
(2)

The probability distribution of a system at thermal equi-
librium is given by the canonical ensemble [2, 3]

ρ(x|λ) = exp
(
βF(λ) − βE(x, λ)

)
, (3)

where β = 1/kBT is the inverse temperature T of the en-
vironment in natural units (kB is the Boltzmann constant),
E(x, λ) is the energy of the system, which depends both on
the internal state x and the external control λ, and F is the
free energy

βF = − ln
∑
x

exp{−βE(x, λ)} . (4)

Alternatively, instead of the free energy, we could write
equivalent equations using the free entropy ψ = −βF or the
partition function Z = exp{−βF}.

If we plug the canonical ensemble (3) into the Fisher infor-
mation (1) we ànd that

I(λ) = β2

⟨(
dF

dλ
−
∂E

∂λ

)2
⟩

. (5)

From Eq. (4) it follows that the derivative of the free energy
with respect to the control parameter, dF/dλ, is equal to the
average derivative of the energy with respect to the same pa-
rameter.

dF

dλ
=

⟨
∂E

∂λ

⟩
(6)

Therefore, the Fisher information of a canonical ensemble
with respect to a parameter λ that smoothly (but otherwise
arbitrarily) controls the energy, is the variance of the in-
ànitesimal change in energy with respect to a change in the
control parameter.

I(λ) = β2

⟨(⟨
∂E

∂λ

⟩
−
∂E

∂λ

)2
⟩

(7)

If we consider the inverse temperature as the controllable
parameter, then the Fisher information is equal to the energy
áuctuations.

I(β) =
⟨(

⟨E⟩− E
)2⟩

(8)

In other words, the Fisher information of a thermodynamic
system tells us the size of áuctuations about equilibrium.

Let us consider two examples. First, suppose the system
under examination is a single polymer, and the parameter un-
der control is the end-to-end distance L. The instantaneous
tension T = ∂E

∂L
is the force exerted by the polymer on the ap-

paratus constraining the distance between the polymer ends.
The Fisher information for this system is equal to the vari-
ance of the tension at equilibrium.

I(L) = β2
⟨(

⟨T⟩− T
)2⟩

(9)

On the other hand, suppose control is exerted by apply-
ing constant tension to the ends of the polymer. The to-
tal energy is then a linear function of length and tension,
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E(x,T) = U(x)−T L(x), and the Fisher information is equal
to the variation of the end-to-end polymer length at equilib-
rium.

I(T) = β2
⟨(

⟨L⟩− L
)2⟩

(10)

In each case the Fisher information has a simple physical in-
terpretation in terms of the equilibrium áuctuations.

When the energy is a linear function of the control param-
eter, as in the last example, then the variance (and therefore
the Fisher information) is equal to the negative second deriva-
tive of the free entropy [4, 5]. However, in general the relation
between free energy and Fisher information contains an ad-
ditional term.

−
∂2βF

∂λ2
= −

∂

∂λ

∑
x

exp
(
βF(λ) − βE(x, λ)

)∂βE
∂λ

= β2

⟨
∂E

∂λ

⟩2

− β2

⟨(
∂E

∂λ

)2
⟩

− β

⟨
∂2E

∂λ2

⟩
= I(λ) − β

⟨
∂2E

∂λ2

⟩
(11)

The last term will be zero if the control parameter is inten-
sive (e.g. the pressure), and will be very small and entirely
unimportant for an extensive parameter (e.g. volume) in the
macroscopic thermodynamic limit. In these cases the Fisher
information can be calculated given the free energy as a func-
tion of the control parameter.

When we have many control parameters λ ≡
{λ1, λ2, . . . , λN} we can construct a Fisher information
matrix Iij (Also commonly gij)

Iij =
∑
x

p(x|λ)

(
∂ lnp(x|λ)

∂λi

)(
∂ lnp(x|λ)

∂λj

)
(12)

If we plug the canonical ensemble (3) into the deànition
of the Fisher information matrix (12), then we ànd that the
Fisher matrix is a covariation matrix of áuctuations around
equilibrium.

Iij = β
2

⟨(⟨
∂E

∂λi

⟩
−
∂E

∂λi

)(⟨
∂E

∂λj

⟩
−
∂E

∂λj

)⟩
(13)

Fisher information is central to the àeld of ‘information
geometry’. Since the Fisher information matrix Iij is essen-
tially a covariance matrix, it follows that the matrix is sym-
metric and positive semi-deànite (all the eigenvalues are pos-
itive), and can therefore can be used a metric tensor to de-
àne a notion of distance between points in the space of pa-
rameters. This equips this manifold of parameters with the
structure of a Riemannian metric [6, 7]. The length of a curve
through parameter space, measured using this Fisher metric
(also known as the Rao metric or entropy differential metric)
is

L =

∫1
0

√√√√∑
ij

dλi

ds
Iij
dλj

ds
ds (14)

Recall that a metric provides a measure of ‘distance’ between
points. It is a real function f(a,b) such that (1) distances
are non-negative, f(a,b) ⩾ 0 with equality if, and only if,
a = b, (2) symmetric, f(a,b) = f(b,a) and (3) it is gener-
ally shorter to go directly from point a to c than to go by
way of b, f(a,b) + f(b, c) ⩾ f(a, c) (The triangle inequal-
ity). Moreover, a Riemannian metric is a length space; there
is always a point b ‘between’ a and c such that the equality
f(a,b) + f(b, c) = f(a, c) holds.

We can also deàne a corresponding divergence, or entropic
action,

J =

∫1
0

∑
ij

dλi

ds
Iij
dλj

ds
ds (15)

which is related to the length (14) by the inequality,

J ⩾ L2 (16)

which can be derived as a consequence of the Cauchy-
Schwarz inequality

∫τ
0 f

2dt
∫τ
0 g

2dt ⩾
[∫τ

0 fg dt
]2

with
g(t) = 1. The value of the divergence depends on the
parametrization. The minimum value L2 is attained only
when the integrand is a constant along the path.

This Fisher information metric has been extensively ap-
plied to thermodynamic systems under the term “thermo-
dynamic length” [8–11], although the connection to Fisher
information has not been widely appreciated [4, 5]. The di-
vergence measures the number of natural áuctuations along
a path, and thermodynamic length is the cumulative root-
mean-square deviations measured along the path.

Another application of Fisher information is the Cramér-
Rao inequality [1]. Suppose that we have a function of state
λ̂(x) that is an unbiased estimator for the parameter λ, i.e.∫

p(x|λ)λ̂(x)dx = λ , (17)

then the Cramér-Rao inequality states that the variance of
the estimate is greater or equal to the inverse Fisher infor-
mation,

⟨(λ̂− λ)2⟩ ⩾ 1

I(λ)
. (18)

For a system in thermodynamic equilibrium, the Cramér-
Rao inequality can be interpreted as a thermodynamic un-
certainty relation [12] (in rough analogy to the quantum un-
certainty relations). For instance, a single measurement of
a system determines the instantaneous energy, but this is
not sufàcient to infer the temperature with certainty. The
Cramér-Rao inequality then relates the standard deviation of
the energy áuctuations ∆E to the minimum uncertainty of
the temperature measurement ∆β = ⟨(λ̂− λ)2⟩1/2 ,

∆E ∆β ⩾ 1 . (19)
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Appendix: Miscellaneous Mathematics

It is useful to recall the behavior of logarithms under differ-
entiation,

∂ lnp(x|λ)

∂λ
=

1

p(x|λ)

∂p(x|λ)

∂λ

and that integration and differentiation can be interchanged,
provided that certain mild technical conditions are met. See
“Leibniz integral rule”.

∂

∂λ

∫
p(x|λ) dx =

∫
∂

∂λ
p(x|λ) dx

Since probability distributions are normalized,∫
p(x|λ) dx = 1

it follows that∫
∂n

∂λn
p(x|λ) dx =

∂n

∂λn

∫
p(x|λ) dx =

∂n

∂λn
1 = 0 .

Consequently, the mean of the “score function” ∂ lnp/∂λ
is zero. ⟨

∂

∂λ
lnp(x|λ)

⟩
=

∫
∂

∂λ
p(x|λ) dx = 0

It follows that the Fisher information is the variance of the
score.

Again, if we can interchange differentiation and integra-
tion, the Fisher information is also equal to the negative
mean of the score’s second derivative:

−

⟨
∂2

∂λ2
lnp(x|λ)

⟩
= −

∫
p(x|λ)

∂

∂λ

[
1

p(x|λ)

∂p(x|λ)

∂λ

]
dx

=

∫
1

p(x|λ)

[
∂p(x|λ)

∂λ

]2
dx−

∫
∂2p(x|λ)

∂λ2
dx

=

∫
p(x|λ)

[
∂ lnp(x|λ)

∂λ

]2
dx− 0

= I(λ)
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