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1 The Drazin inverse
The inverse of a square matrix A is the unique matrix X

(if it exists) such that

AX = XA = I. (1)

A generalized or pseudo-inverse [1, 2] is an operation that
has some of the properties of the usual inverse, is the same
as the usual inverse if the matrix is nonsingular, but that
can be applied to a larger class of singular matrixes.

Different generalized inverses are traditionally charac-
terized by some subset of the follow conditions:

AXA = A {1}
XAX = X {2}

(AX)∗ = AX {3}
(XA)∗ = XA {4}

AX = XA {5}

AkXA = Ak {1k}

The most commonly encountered variant is the Moore-
Penrose pseudo-inverse, which is sometimes denoted the
{1, 2, 3, 4}-inverse since it satisfies conditions 1, 2, 3, and 4.
Herein, we’re interested in Drazin’s {1k, 2, 5}-inverse [3],
which satisfies conditions 2 and 5, and the alternative
first condition 1k, where k is some positive integer. The
{1, 2, 5}-inverse is a common special case of the Drazin in-
verse, often called the group-inverse.

Although the Drazin inverse is a general construction,
we’ll restrict our attention to its realization in the linear
algebra of matrixes (Since that’s where applications of in-
terest to us are to be found). Given a matrix A, we’ll de-
note the {1k, 2, 5} Drazin inverse as AD, and the {1, 2, 5}
group inverse (if we are so restricted) as A×. (Note that
the Moore-Penrose inverse can be applied to rectangu-
lar matrices, but condition {5} (commutation) restricts the
Drazin inverse to square matrices.)

The Drazin inverse is unique. SupposeX and Y are both
Drazin inverses of A. Then [1]

X = XAX = XAXAX = . . . = X(AX)k = AkXk+1 (2a)
= Ak(YA)Xk+1 = . . . = Ak(YA)k+1Xk+1 (2b)
= Yk+1A2k+1Xk+1 (2c)
= Yk+1Ak(XA)k+1 = . . . = Yk+1Ak(XA) (2d)
= Yk+1Ak = (YA)kY = . . . = YAYAY = YAY = Y

(2e)

(a) We use property {2} to append k copies of (XA), then
use commutation {5} to gather terms. (b) We can then use
property {1k} to append k + 1 copies of (YA). (c) Apply
commutation again, we get an expression that is symmet-
ric betweenX and Y. (d) Reversing the operations, we now
remove k+1 copies of (XA) (e) And then remove k copies
of (YA) to yield Y.

1.1 Representation via Core-nilpotent de-
composition

Any square matrix A (or, more generally, any linear oper-
ator) can be decomposed into the Jordan canonical form,
A = SJS−1, where S is some invertible matrix, and J is a
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block diagonal matrix

J = Jn1,λ1 ⊕ Jn2,λ2 ⊕ · · · ⊕ Jnm,λm
(3)

Each Jn,λ is a Jordan block, an n×n matrix with λ on the
diagonal, and ones on the super-diagonal. For instance,

J3,2 =

2 1 0
0 2 1
0 0 2

 (4)

An invertible matrix is nonsingular – it has no zero eigen-
values. The eigenvalues of a Jordan block are all λ, and
thus the block is invertible if λ isn’t zero. The singular
blocks are nilpotent: raised to the nth (or higher) power
they yield the zero matrix.

(Jn,0)
n = On×n (5)

Core-nilpotent decomposition: Any square matrix can
therefore be expressed as

A = S[N⊕ C]S−1 , (6)

where S andC are invertible, andN is nilpotent. The index
k of a square matrix1 is zero if the matrix in nonsingular,
else the size of the largest singular block. Thus a singular
matrix raised to kth (or higher) power Ak will have index
1, and the entire nilpotent sector N will be zero.

In this representations the Drazin inverse is

AD = S[O⊕ C−1]S−1 (7)

which satisfies the Drazin requirements

AkADA = Ak {1k}
ADAAD = AD {2}

ADA = AAD {5}

Intuitively, the Drazin inverse inverts the invertible part
of the matrix, and zeros the non-invertible part. The Jor-
dan block decomposition is unique, up to permutation of
the blocks. It follows that the Drazin inverse exists for all
square matrices, and is unique.

1.2 Projection operator
Perhaps the most important property of the Drazin in-
verse is that P0 = I − AAD is a projection operator ((I −
AAD)2 = I − AAD) that projects onto the null-space of A.
(The null-space (or kernel) is the set of vectors x for which
Ax = 0.)

P0 = I−AAD = I− S[N⊕ C]S−1 S[O⊕ C−1]S−1 (9a)
= I− S[O⊕ I]S−1 = S[I⊕O]S−1 (9b)

1The index of a matrix is the smallest positive integer for which
rank Ak = rank Ak+1

The projector onto the complimentary non-null-space is
AAD.

If we know the null-space projection operator (which
we often do), we can calculate the Drazin inverse as [4]

AD = (I− P0)(A− P0)
−1 (10)

Proof:

AD = (I− P0)(A− P0)
−1 (11a)

=
(
S[O⊕ I]S−1)(S[N⊕ C]S−1 − S[I⊕O]S−1)−1

(11b)

=
(
S[O⊕ I]S−1)(S[(N− I)⊕ C]S−1)−1 (11c)

=
(
S[O⊕ I]S−1)(S[(N− I)−1 ⊕ C−1]S−1) (11d)

= S[O⊕ I][(N− I)−1 ⊕ C−1]S−1 (11e)
= S[O⊕ C−1]S−1 (11f)

1.3 Group inverse
If the index of a matrix is 1, then the nil-potent sector is
the zero matrix (A = S[O⊕C]S−1), and the Drazin inverse
reduces to the {1, 2, 5} group inverse [5].

AA×A = A {1}
A×AA× = A× {2}

A×A = AA× {5}

The name “group inverse” arises because the positive
powers of A and A× form an Abelian group with AA× as
the identity element. Both the notations A# and A+ are
commonly encountered, although the latter is also com-
monly used for the Moore-Penrose pseudoinverse.

The group inverse, if it exists, is unique. SupposeX and
Y are both group inverses of A. Then [2]

X = XAX = AXX = AYAXX = YAXAX

= YAX (13)
= YAYAX = YYAXA = YYA = YAY = Y

This is just a simplification of the proof used for the
Drazin inverse (2).

For the group inverse we also have [0]

A× = P0 + (A− P0)
−1 (14)

Proof:

A× = S[I⊕O]S−1 +
(
S[O⊕ C]S−1 − S[I⊕O]S−1)−1

(15a)

= S[I⊕O]S−1 +
(
S[(−I)⊕ C]S−1)−1 (15b)

= S[I⊕O]S−1 + S[(−I)⊕ C−1]S−1 (15c)
= S[O⊕ C−1]S−1 (15d)
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1.4 Diagonalizable matices
If a matrix is diagonalizable then we can decompose the
matrix as A =

∑
λ̸=0 λPλ, where λ are the eigenvalues,

and the P’s are an orthonormal collection of projection
operators PλPλ = Pλ, PλPλ′ = 0 (if λ ̸= λ ′),

∑
λ Pλ = I.

For a diagonalizable matrix, all the Jordan blocks are of
size 1, and the index of the matrix is zero (if invertable) or
one. Thus the Drazin inverse of a diagonalizable matrix
reduces to the group inverse.

The group inverse has a simple realization for diagonal-
izable matrices.

A =
∑
λ̸=0

λPλ (16a)

A× =
∑
λ̸=0

1
λ
Pλ (16b)

Intuitively, we simple invert all of the invertible eigenval-
ues.

AA×A =
∑
λ̸=0

λPλ = A (17a)

A×AA× =
∑
λ̸=0

1
λ
Pλ = A× (17b)

A×A =
∑
λ̸=0

Pλ = I− P0 = AA× (17c)

2 Transition Rate matrix
The dynamics of a continuous time, discrete state Markov
process can be conveniently described by a transition rate
matrix, R(t). The evolution of the probability density is
given by a first order differential equation

∂

∂t
ρ(t) = R(t)ρ(t) (18)

or alternatively for a temporally homogeneous dynamics,
the evolution of the probability distributed during an in-
terval of duration τ can be written as

ρ(t+ τ) = eτRρ(t) (19)

Note that the rate matrix acts from the left. Be wary, since
the opposite convention is also common, particularly in
the Markov process literature.

The off-diagonal elements of a rate matrix are are non-
negative, and all columns sum to zero.

Rfi ⩾ 0 for all i ̸= f∑
f

Rfi = 0 for all f

The off-diagonal elements Rfi give the rate of going from
state i to state f. When a jump occurs, the probability of
transiting from state i to state f is proportional to Rfi. The

waiting time between jumps follows an exponential distri-
bution with a rate given by the negative of the diagonal
elements −Rii.

If we fix the rate matrix and allow the system to evolve
for a long time then the ensemble will reach a stationary
distribution which no longer changes with time. We will
denote a stationary distribution of the dynamics by the
vector π.

eτRπ = π, Rπ = 0 (20)

We’ll generally assume that the rate-matrix is ergodic and
therefore that the stationary distribution is unique. (In
this context ergodic means that the system can eventually
reach any state from any starting state.) It follows that
the rate matrix has a single zero eigenvalue, and that the
index of the matrix is one.

Given a transition rate matrix R we can also construct a
stochastic matrix for any time interval τ.

eτR = Mτ (21)

In the infinite time limit the stochastic matrix relaxes the
system to the stationary state.

lim
τ→∞ eτR ≡ M∞ = π1T (22)

Here 1 is a vector of ones.
Given that the stationary distribution is unique, then R

has one zero eigenvalue, with corresponding projection
P0 = π1T = M∞.

2.1 Drazin inverse of the rate matrix

Since the rate matrix has a zero eigenvalue, it cannot be
inverted. However, we can construct the Drazin inverse
of the rate matrix. And since the index of a ergotic rate
matrix is one, the Drazin inverse reduces to the {1, 2, 5}
group inverse.

The most important property here is that R×R projects
onto the non-null space of R. In other words

R×R = I− π1T (23)
R×Rρ = ρ− π = δρ. (24)

Applying R×R to any probability returns the difference of
that probability from the stationary distribution. (Note
again that we assume that R has only one zero eigenvalue,
and therefore a unique stationary state.)

Also

R×π = 0 (25)
1TR× = 0T (26)
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These properties follow from R×R = R R× = I− π1T

R×R R× = R×(I− π1T ) = (I− π1T )R× (27a)
R× = R× − R×π1T = R× − π1TR× (27b)

0 = R×π1T = π1TR× (27c)
R×π = 0, 1TR× = 0T (27d)

(Note that Mandal and Jarzynksi (2015) [6] use these prop-
erties, plus commutation, to define the Drazin inverse.)

2.2 Relaxation times
The rate matrix encodes transition rates between states.
Conversely, the pseudoinverse matrix R× tells us the char-
acteristic relaxation times for the process. First note the
following integral [7, Eq. 6.3],

R×R

∫∞
0

etRdt = R×
∫∞

0
RetRdt

= R×(etR
∣∣∞
0 )

= R×(M∞ − I) = −R×RR×

= −R× (28)

As R×R projects onto the non-null space we can write
the relaxation of any initial probability to the stationary
probability as

etR δp(0) = etRR×R δp(0) = δp(t) (29)

The exponential is just a polynomial in R, and R and R×

commute, so we can move the projector to the left of the
exponential. We then integrate w.r.t. time∫∞

0
dt R×R etR δp(0) =

∫∞
0

dt δp(t) (30)

The left side simplifies due to the previous remarked in-
tegral.∫∞

0
dt R×R etR p(0) = R×R

∫∞
0

etRdt δp(0) = R× δp(0)

(31)

and on the right with have a vector teffδp(0), where τeff

are the effective relaxation times of each microstate. Thus

R×δp(0) = τeffδp(0) (32)

(Kudos: This basic idea is in the Supplementary Mate-
rials of Mandal2015 [6]. )

2.3 Instantaneous distribution
Suppose we have a non-temporally homogeneous dynam-
ics where the rate matrix R(t) is a function of time. Lets
assume continuously differentiable control. Then we can

express the instantaneous distribution in terms of the
Drazin inverse of the rate matrix.

d
dt

p(t) = Rp(t) (33a)
R× d

dt
p(t) = R×Rp(t) = p(t) − π(t) (33b)

(I− R× d
dt

)p(t) = π(t) (33c)

p(t) =
(
I− R× d

dt

)−1
π(t) (33d)

=

∞∑
n=0

(
R× d

dt

)n
π(t)

(a) Definition (b) multiple both sides by R×. On the right
the projection R×R yeilds δp. (c) gather like terms (d) This
follows by treating (1−x)−1 = 1+x+x2 + · · · as a formal
power series generating function. This relation is formally
exact.

The first term in the power series is the identity, so we
can also write

δp(t) =

∞∑
n=1

(
R× d

dt

)n
π (34)

(Kudos: This is a slightly simplified derivation and
result from what is found in Mandal and Jarzynski
(2015) [6])

2.4 Time reversal

Let R be an ergotic rate matrix with steady state π. The
time reversal of the rate matrix is R̃ = D−1

π RTDπ, where
Dπ is a diagonal matrix with the vector π along the diag-
onal [8, 9].

The Drazin inverse commutes with time reversal [10].

R̃× =
(
D−1

π RTDπ

)×
=

(
D−1

π (R×)TDπ

)
= (̃R×) (35)

3 Thermodynamic geometry

Let Dρ = diag(ρ) be the diagonal matrix with the vector ρ
along the diagonal. Then we can compactly express the
relative entropy between the instantaneous and equilib-
rium distributions as

D(ρ∥π) = 1T (lnDp − lnDπ)ρ (36)

This relative entropy is the free energy difference between
the instantaneous and equilibrium ensembles [0, 0].
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Rate of mean excess work is ⟨βẆex⟩ = dλ
dt

d
dλ

D(p∥π).

⟨βẆex⟩ = dλ
dt

d
dλ

D(p∥π) (37a)
= dλ

dt
d
dλ

1T (lnDp − lnDπ)p (37b)
= −dλ

dt
· 1T ( d

dλ
lnDπ)p (37c)

= −dλ
dt

· 1T ( d
dλ

lnDπ)
(
I− R× d

dt

)−1
π (37d)

= −dλ
dt

· 1T ( d
dλ

lnDπ)
(
I+ R× d

dt
+ · · ·

)
π (37e)

≈ dλ
dt

· 1T ( d
dλ

lnDπ)(−R×) d
dt

π (37f)
≈ dλ

dt
· 1T ( d

dλ
lnDπ)(−R×)dλ

dt
d
dλ

π (37g)
≈ dλ

dt
· 1T ( d

dλ
lnDπ)(−R×)( d

dλ
lnDπ)π · dλ

dt
(37h)

≈ dλ
dt

· ζ · dλ
dt

(37i)

(a) Definition of mean excess work
(b) Insert definition of relative entropy (36)
(c) Derivative w.r.t. to λ only hits the score of the equilib-
rium distribution
(d) Insert expression for the instantaneous probabil-
ity (34)
(e) Expand the generating function . . .
(f) and truncate at second term. First term is identically
zero since 1T d

dλ
π = 0 due to normalization.

(g) chain rule
(h) ( d

dλ
lnDπ)π = ( d

dλ
Dπ)D

−1
π π, = ( d

dλ
Dπ)1 = d

dλ
π.

(i) Define the friction ζ (’zeta’)

ζ = 1T ( d
dλ

lnDπ)(−R×)( d
dλ

lnDπ)π (38a)

=

∫∞
0

dt 1T ( d
dλ

lnDπ)(e
tRRR×)( d

dλ
lnDπ)π (38b)

=

∫∞
0

dt 1T ( d
dλ

lnDπ) e
tR ( d

dλ
lnDπ) π (38c)

=

∫∞
0

dt
⟨
( d
dλ

lnDπ(t)) (
d
dλ

lnDπ(0))
⟩

(38d)

(c) Note that RR× = (I−π1T ), and that 1T d
dλ

π = 0 by con-
servation of normalization. Therefore RR×( d

dλ
lnDπ)π =

( d
dλ

lnDπ)π.

If λi is a vector of control parameters, then we get a ma-
trix of friction coefficients ζij, and the mean excess work
is

⟨βẆex⟩ ≈ dλi

dt
· ζij · dλj

dt
(39)

3.1 Fisher Information

Lets define Fisher information via the Cramer-Rao bound
using the same notation. Suppose we have some measure-
ment A, that is an estimate for the parameter λ; ⟨A⟩ = λ̂ =
1TDAp (A is a vector of measurement outcomes for indi-

vidual states). For an unbiased estimator d
dλ

⟨A⟩ = 1.

1 = d
dλ

⟨A⟩ (40a)
1 = d

dλ
1TDAp (40b)

1 = 1TDA
d
dλ

p (40c)
1 = 1TDA(

d
dλ

Dp)p = cov(A, d
dλ

lnp) (40d)
1 = cov(A, d

dλ
lnp)2 ⩽ var(A) var( d

dλ
lnDp) (40e)

therefore var(A) ⩾ 1
Iλ

, Iλ = 1T ( d
dλ

lnDp)
2 p (40f)

3.2 Currents
Suppose we wish to measure flows between states. We
construct a skew-symmetric matrix F = −FT containing
only {−1, 0, 1}. The diagonal entries are zero, and each
off-diagonal +1 records a transition between states. The
corresponding −1 skew-symmetric entry counts the back-
wards transitions between the same states. The operator
that measures the instantaneous current is then J = R⊙ F,
where ⊙ is the Hadamard (entry by entry) product, and
the average current is ⟨J⟩ = 1T J p.

⟨J⟩ = 1T J p (41a)
≈ 1T J (I+ R× d

dt
) π (41b)

≈ 1T J π+ 1T J R× d
dt

π (41c)
≈ 1T J π− dλ

dt
1T J (−R×)( d

dλ
lnDπ) π (41d)

With this notation we can express the autocorrelation
function of the current fluctuations as

CJJ = −1T JR×J π = −1T (R⊙ F)R×(R⊙ F)π (42)

Proof:

CJJ = −1T JR×J π (43a)

=

∫∞
0

dt 1T J(etRRR×)J π (43b)

=

∫∞
0

dt 1T J etR (I− π1T )J π (43c)

=

∫∞
0

dt 1T J (etR − π1T )J π (43d)

=

∫∞
0

⟨J(t)J(0)⟩− ⟨J⟩2 (43e)

(Kudos: This is inspired by Eq 16-17 of Baiesi2009 [11].
But we seem to get a slightly different conclusion.)
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