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Abstract

Sharp lower bounds are derived for the
givergence between two distributions and the probabil-
jeies of misclassification of three decision rules.
The three decision rules considered are the optimal
payes rule, the nearest neighbour rule, and the "pro-
portional prediction" randomized decision rule. It is
shown that the randomired rule yields a probability of
mimﬂassification equal to the asymptotic nearest
peighbour error rate. The bound between the Bayes
error rate and the divergence is more general than the
Rullback bound and, unlike the latter, is distribution
free. The bounds are used to obtain sharp inequalities
petween measures of probabilistic dependence between
features and classes in the multi~class pattern recog-—
pition problem. The bounds lead to sharp inequalities
between the divergence and various information and
distance measures found in the literature. Finally,
the divergence is related tc the least-mean-square-

error design criterion in pattern recognition.

1. Introduction

Consider the two-category pattern class-—
ification problem. Let P(X/Ci) denote the class—con-
ditional probability density function of the feature
vextor X conditioned on the class Ci’ i=1,2, The
Bhattacharyya coefficient and the divergence are def~- -~

ined, respectively, by

o = f /ﬁx/cl) P(x/C,) dX (€D)

and
P(X/Cl)

J=17 [P(X/Cl) - P(X/CZ)] log ?('m—z')‘ dX. (2)

These measures are well known in the pattern recog=
nition iliterature {1] and are useful for feature sel-
éction when the underlying distributions are Gaussian

because they are much easier to evaluate than the error
Probabii ity "

Let class C, occur with a priori probability

T i
i i=1,2, 'n’l + 172 = 1
8eneral measures than (1) and (2) above, as follows:

It is useful to define more

T

p (my, my) = /n m, J /P(X/Cp) P(x/C,) dX

= S P(X) VP(C /%) P(C/X)  dX

= f P(X) po(X) ax, (3

and

wlP(X/Cl)
J(m ,m,y) = S [mP(X/C,) - m,P(X/C,)] log X

wzp(xlcz) g

P(C /%)
RGO (B, /D) - PC,/X] log Fig 7Ry O

I

S P(X) J(X) dX. 4)
It follows that p(1/2,1/2) =p/2 and J(1/2,1/2)=3/2. In
(3) and (4) P(X) is the mixture distribution and is
given by

P(X) = P(X/C)) 7 + P(X/Cy) m, .
In this paper, the divergence is related to the prob-—
abilities of misclassification of three well known dec—
ision rules. These relationships are important when
one would like to know what performance can be expect-
ed from a decision rule when features have been selec-—
ted using the divergence. The first decision rule is
the optimal Bayes rule. Given a feature vector X from
some unknown pattern P, P is classified as belonging
to class C1 if P(Ci/X) > P(Cj/x) , i=1,2, i#j. This
rule gives the minimum possible probability of mis-

classification [2] which is given by

B, = Ji min { P(X/Ci) T ] dx , i=1,2
= [ P(X) min { P(Cl/X), P(C,/X) 1 dax
= [ P((¥) Pe(X) dx . 5)
The second decision rule considered here is the near—

est neighbour rule ( NN-rule). Let {X,0} =

1%,5075 X550,55 een 3 XN’GN} be the set of N pattern
samples available, where Xi and Gi denote, respectiv-
ely, the feature vector or measurement information and
the label or classification information of the ith
pattern sample. It is assumed that each Gi associated
with Xi is the correct label, i.e., the pattern

samples have been correctly pre-classified. Let

(Xn,On) & (X,0} to be the sample nearest to the un-

known X. P is then classified as belonging to the
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-lass associateq with the label ©,- Cover and Hart [3]

have shown that as N » o the asymptotic nearest neigh-

denoted by R, is given by

R = [2p(x/cyd Ty PAR/C,) m, 1 P(X)]
= TP{X) [2p(c,/x) P(C,/X] dx
=P RGX)  ax .

bour error rate,

dx

6)
The third decision rule under investigation is the
randomized decision rule.
distributions be known as
rule,

Let the class—~conditional

i
with Probability P(Cilx). This type of decision rule

ution of classifications more

stribution than does the

tends to produce a distrib
similar to the Original di
deterministic Bayes rule ang is also known as Proport-
ional Prediction [4},

The Probability of misclass-
ification using this Tu

le, denocted by R for reasons
nt,

that will become appare
For any given value of X, C

can be derived as follows.
1 ©ccurs with probability
© belong to class ¢
«  Similarly, ¢

P(CI/X) and it is decided t

2 with
Probabilicy 3 - P(Cl/X)

2 Occurs with
Probabilirty P(C2/X) and it is decided to belong to
class C1 with Probability 1 - P(CZIX) + Hence, for a

given value of X the resulting probabi
ification is given by
R(X) =

lity of misclass—

P(czlx) [1- P(czlx) 1+9P
ZP(Cl/X) P(CZ/X)

Taking the €xpected value
vields

€10 [1-P(cy /0]

N

of (7) with respect to P(X)

R =17 PX REXK) 4gx R

which is the same ag the asymptotic
error rate of (&),

(8)
nearest neighbour

This equivalence between the NN-
rule and the Proport

( PP

boundary into the region for

almost always choose class C
X.

Class Ci the NN-rule will

i unless a maverick is near
In the PPR~rule maverick

S are explaineqd by the fact
that P(Ci/x) is hardly ever On the other

hand, when X lies around the decision boundary it jg

likely to have nearest neighbours of either class, 1In

obability

e to the

terms of the PPR-rule one chooses Ci with pr

P(Ci/X) which is close to 0.5 when X is clog
decision boundary.

In this paper a generalized version of the
inequality of Hoeffding ang Wolfowitg {51 is derived.

Using this inequality lower bounds are
of J,

® o=

derived foy P

e
and R in terms It 1s shown that the bounds for
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(SRR RRREY]

Pe are tighter than existing bounds, In addition
sharper lower bounds are derived for the diVetgm;
to the Kulle
The bounds are aPplieyg to g
ence measures between features and clagg

ion measures,

ir relatio
in terms of Pe and R. Their e n

baﬁk
bound is discussed, o

de
es equi\,oQa
and distance measures foung in the t
The divergence is finally 4

1s
o relatEdt
the least-mean-square-error design Criteriopn, 9

literature.

2. An Inequality Between J(rw

1""2) and D('IT

l"‘rz)
The divergence between two distributions
occurring with a priori probabilities "1 and "2 o
t as
be written P(X/Cz) ﬂz
= = E. { 1o P ————=
J( ﬂ’l. ﬂ'2) Tfl N =4 P(x/cl) .n.l }
- 7", E, { log fﬁfiflz-::L 1
2“2 P(X/CZ) L (9)

where Ei denotes expected value with r

Since log x is a convex upward functio

esSpect to P(X/C_
inequality applied to (9) gives

n ("), Jenseq'g

J( ™

b
12

P(X/Cz) T
1 P }

(X/Cl) ™

P(X/Cl) ™
2 POX7C,y 7, !

2) -2 Lo log

- 2 72 log E

which, in turn, yields
T 1) R = 2 Hew T B¢ LTV
=27, log [ p( TyeMy)/
Expanding (10) and recombinin
result given by

J(w

1 1
> 1. (10)

& terms yields the desired

1° ") 2 - 2 [ H(wn) + log p( =

10 T 1, )
where H(rn) ig the entropy function given by
= — - | - 2
H(m) 1, log T T, log , (12)
When “1 = T, = 1/2, H( = ) = log 2 and (11) reduces
to
F D -

quality due to Hoeffding and
Hence (11) is a generalization of (13)
to take into account the a Priori Probabilities.

Wolfowity 5135

3. Lower Bounds for R and J
———————=2unds for R and J

Although there exists a lower bound on R(X)
in terms o

f JX) no bounds

are available, 1in the
literature, between R ang J. Horibe [6] showed that
Rz 200w, ny 2,
from which jr follows that
log p( T1*T) £ log /R/Z .

a4)
Substituting (14) into (11) yields




R > exp [ =2 H(m) = J¢( Tys W) ]

1s)
-, = 1/2, (15) reduces to

R 2 (1/2) exp [ -3/2 7,
pere the equality holds for both J=o and J=e

ot M1

(16)

chitti Babu [7] showed that

R(X) = (M/2) [ 1 -3 (X)/27]. an

raking expected values of both sides of (17) yields a
gecond lower bound on R in terms of J as shown below.
R2 /2) [1-J3Cr, m,)/2 )

For Ty =T, =1/2, (18) reduces to
R >z 1/2 - J/8

shere the equality holds when J=o.

(18)

Q9)
Both (16) and (19)
It is observed that, for J
< 3.2, (19) is the sharper bound.

3.2,

are {llustrated in Fig. 1.

On the other hand,

A lower bound on J in
terms of R that is sharper than both (16) and (19) is

given in (20) and (21).

for J 2 (16) is sharper.

s 1 +vY1-orR
A4 T 112) 2 1-2R 1log 1—————_23_ (20)

1 ~v 1~ 2R
For m; = T, = 1/2 , (20) reduces to

J >z 2 Y1 - 2R 1log {——-—-—1 = Wl (21)
1-71-2%

These bounds follow from a result in section 4 and,
hence, their derivation is deferred to that section.
Inequality (21) is also illustrated in Fig. 1.
Although (21) gives the sharpest inequality it has the
disadvantage that it cannot be sclved for R as a
function of J, which is a more useful form since J is
what 1is to be computed explicitly rather tham R. For a
proof that (21) is sharper than both (16) and (19) see
Appendix A.

It should be pointed out that the bounds given
by (15), (16), (18), (19), (20) and (21) are not
important from the practical point of view when R is
interpreted as the asymptotic nearest-meighbour error
rate because we want to compute J only for the case of
Gaussian distributions - a situation in which we would
not use the nearest-neighbour rule. the
bounds are useful when R is interpreted as the error
tate of the proportional-prediction randomized decision
tule - a parametric rule which has knowledge of the
underlying distributions.

However,

From the theoretical point
°f view these bounds are very important and lead to

Some of the results in sections 7 - 9.

4. Lower Bounds for P_ and J

There exists in the literature a lower bound

on
Pe In terms of J. It appears to have been derived

£1 .
"8t by Kailath {8] and has since appeared in 2

.

number of papers on feature selection

pattern recognition [9]. It is given by
P 2 (1/4) exp

i ' [ -3/2 1
where the equality holds of J = = ,

and texts on

(22)
This bound is

illustrated in Fig. 2 where it is seen that it is a
loose bound.

Cover and Hart [3] have shown that

R < 2p (1~ ) (23)
and, hence, that
R £ 2p . (24)
Substituting (24) into (15) yields
P >
e -

exv[-2B(w)-J(ﬂl,Tr2)I-(25)

For “l = ﬂz =1/2 ,

(25) reduces to (22) and, hence,
(25) can be considered as a generalization of Kailath's

bound. Similarly, substituting (24) into (18) yields
P2 (/&) [1-3Cm, m)/21] . (26)
For Ty = Ty = 1/2, (26) reduces to
P, 2 1/4~-J/16 , 27)

which is illustrated in Fig. 2.

For J 2
less, but for J <
L

4 it is use-
3.2 it is sharper than Kailath's
bound and, hance, improves the latter when used in con-—

junction with it.

Tighter bounds than (25) and (26) can be
obtained by using (23) rather than (24).

Substituting
(23) into (15) yields

Pe (1 - Pe Y 2 exp [ - 2 H(7) - J(nl, "2) 1 . (28)
Solving (28) for Pe yields

B, 2 1/2) - (1/2) vYi-4 exp[~-2 H(m) - J(ﬂl,ﬂz)} .
(29)

For Ty =Ty =1/2 , (29) reduces to
P, o2 (/) - (/) V1 - exp (-3/2) , (30)

where the equality holds for both J=0 and J== ,

similarly, substituting (23) into (18) and solving for
Pe yields

=
Bs = a/2) = v 3¢( Ty wz)/S 3 (31)
which for equal a priori probabilities reduces to
P, 2 @/ -.Q/e) T, (32)

where the equality holds when Js0. Bounds (30) and
(32) are also jllustrated in Fig. 2 which shows that

(32) 1s sharper than (30) for J < 3.2.

A lower bound on J in terms of Pe which is
sharper than all the above bounds can be derived as

follows. From (4) it follows that

B(C,/X)
Ix) = [ P(C /) = B(Cy/X ] logl5reTmy

Towiry R
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Also, from (5) it follows that

PC(X) = min | P(Cllx). P(CZ/X) 1. (34)
The crucial step in the derivation of the bound is the
reallzation that, since J(X) is pymmetrical with
respect to P(Cllx) and P(Czlx), 1t can be expressed in

terms of Pc(x) as P (X)
IO = [ 2P,(X) =11 log [3‘1;%7‘627] . (35)
@

Now consider the function
f(x) = (2x~1) log ( x/1-%))
fn the interval 0 < x s 1/2. The first derivative

of f(x) with respect to x is given by

df (x) = 2x-1 + 2x-1 + 2 log (x/(1=-x)) . (36)
dx 1-x x

The mecond derivative is given by

a2f(x) = 1-2x + 4 + _4 - 1=2x an
dx2 x2 x 1-x ()-—x)2

1t can easily be shown that (37) is non negative.
Hence f(x) and (35) are convex downward LJ functions.
For a convex downward function Jensen's inequality 18
glven by
E { f(x) ) 2 f(E{x 1} ) , (38)

where E denotes expected value. Taking the expected
value of both sides of (35) with respect to P(X) and
using (38) yields the desired bound given by

(7, Ty 2 (2 P, - 1) log (P, /(1~P) 1 . (39)

For equal a priori probabilities (39) reduces to
J z2(2 Pc - 1) log | Pe/(l—Pc) 1, (40)

where the equality holds for both Pc-O and Pe-1/2. As
i{llustrated in Fig. 2, (40) 1s the sharpest inequality
between J and Pc but has the disa&&nntage that it can-
not be solved for Pe as a function of J, For a proof

that (40) 1is sharper than (30) and (32) see Appendix B.

From (6) it follows that

R(X) = 2 P(C,/X) B(C,/%) , (41)
which can be written as
RGO = 2 P(X) [1 =20 1, (42)

where PQ(X) ig given by (34). Solving the Pe(x) yields

P (X) = (1/2) - V(78 - R(XD)/2 . (43)
1t can easily be shown that (43) is a convex downward
function of R(X). Taking expected values, with respect

to P(X), of both sides of (43) ylelds, using Jensen's
inequality,

B, L 172y - v /4y - ’/2 . (44)

Substituting (44) into (39) yilelds (20).

5, Relation to Kullback Bounds

The Kullback-Liebler numbers {10) are given

by

P(X/Cy)
(45)

1(1,2) = J P(x/cl) log §z§75;7

P(X/Cy)
1(2,1) = [ P(X/Cy) 108{ p(x?o,)

denote the probability of misclassification

and
. (46)

Let P
el
glven class Ci’ {=1,2, where Pc -1 Pel + ", PeZ .
The Kullback bounds are given by {81, [0}, [11],
1¢1,2) 2 Pnl 1og [Pcll(]—Pcz) 1 + (l—Pcl) log

-

[ (=P )Py 1 s (47)
and
1(2,1) 2z P,y los [ Pcz/(l_Pel) ]+ (=P, 5) log

[ (1-P ;) /P41 » (48)

When the distributtons are such that
£ P(x/C,) dX = [ P(X/C;) dX (49)
Y, Yrc,
where S&/Ci & (rzx : P(X/Cl) > P(X/CJ) }

1,j=1,2, 143, and @ 4

i{s the entire feature space, then PQI-PEZ-Pe . For
example, (49) is true for Gaussian distributions with
Adding (47) and (48), sub-
stitating PulnpeZ_Pc’ and using the fact that
1(1,2) + 1(2,1) = J, yields (

J oz o2(2p -1) log | Pe/(l—Pe) 1, (50)
It is nice to know

equal covariance matrices.

which is a special case of (39).
that assumption (49) 1is not needed and that (50)

actually holds in general.

6. Application to Dependence Measures

Consider the M-class problem, A measure of
the dependence between features and classes can be
obtained by measuring the distance, in some sense,
between the joint probability distribution P(X,C) and
Vilmansen [12]

considers various measures of probabilistic dependence

the product of the marginals P(X)P(C).

in this way and relates them to the probability of
misclassification Pe. Two measures considered im [12]
are the Kolmogorov dependence, first proposed by

Hoeffding [13] and, given by

M
D (X, 0) = LE S |P(XC) - PO m | ax, (51)

A
and the Joshi dependence, first proposed as a measure
of channel capacity, Joshi [14], and, glven by

M
DJ(X,C) = & I [P(X,Ci) - P(X) "11 log

[ P(X,Ci)
iqij‘";z—-] ax . (52)

The bounds between J and Pe s, for the 2-class problem
derived in section 4, can be used to form sharp

inequalities between the above dependence measures for



ol

- u.class problem.
£

It can easily be shown [15] that,
riori probabilities 2
aP

for equal

P, - /2y - Vv/4 , (53)
shere v is the Kolmogorov variational distance given by
v = J | P(X/Cy) — P(X/C,) | ax . (54)
pstituting (53) into (31), (32) and (40) yields,
1y,
respective
v = 2 [1- exp(-3/2) ]1/2, (55)
1/2
vz 3O (56)
and 24V
J 2z Vleg ﬁ) . (57)

Realizing that DK(X,C) are distance measures between
two distributions in a continuous-discrete space of
gimensionality one greater than the dimensionality of
%, allows ope to write (55)-(57), respectively, in the

lowing way.
far 2 + D (X,0)
DK(X,C) log T —priroey

D,(X,0) 2 D, (%.0) (28)
_ _ 1/2

D X,Q) = 2 {l - exp [ -D(X,0)/2 1 } (59)

DX, ©) 5 [ D (X0 i (60)

The Kolmogorov dependence DK(X,C) can also be

related to the expected divergence J which is given by
_ M M

Io= ok sh Ty gy o

is the divergence between P(X/Ci) and P(X/C.)

(61)

where Jij

1t was shown in [16] that

J = 2 D (X,C) . (62)
This relation supports Vilmansen's conjecture [17]

that there is a close relationship between the depend-
ence of features and classes and the distance between
class-conditional distributions. Substituting (62) in-

ta (58), (59) and (60) yields, respectively,

— 2+ DK(X,C)
J> 2 DK(X,C) log 3

. D (63)
- DK(X,C)
D(X,C) < 2 [ 1- exp(-T/4) 1%/2 (64)
and
Bme) s (TR, (65)

vhere the equality holds when classes and features are
independent,

One measure of dependence not considered in
f12] can be developed from the asymptotic nearest
neighbour error rate R. For equal a priori

Probabilities R is given by

P(X/C,) P(X/C
2E p ( 1) x/ 2) & s

(66)
F(R/C)) + P(X/C,)

¥hich, in 5 sense, measures the distance between
(chl) and P(X/C,). Hence, a new measure of

[\t
€Pendence can be defined as

——

M P(X,C,) P(X) 7y
= * i ax . (67)
DR(X,C) = igl v P(X,Ci) + P(X) my

Furthermore, from the fact that [3]

P < R < B (1-7, )

e - -

using (53) and similar arguments as above, it follows
that

(1/2) - Dp(X,C)/4 < DL(X,C) = (/2) - /8

2
[ Du(X,0) 1 (68)
where the equalities hold for DK(X.C) = 0, i.e., when
the features and classes are independent.

7. Application to Equivocation Measures

Shannon's measure of equivocation is the most

well known and, for the 2-class problem, is given by

H(C/X) = ~ P(X) I, P(C,/X) log P(Cy/X) dX . (69)

Not as well known is Vajda's quadratic equivocation
[18] given by

2
QE/R)= - J P(X) I P(C/X) [P(C/X) - 1] dX
2
=1-sP® I [PC/01% & . (70)

Recently, Toussaint [16], [19],

of equivocation measures given by

[20] proposed a family

*

2
MAC/D = SR I | REe/w -1/2 |8 ax , 0D
where k™ = 2(k+1)/(2k+l) and k=0,1,2,... . Of
particular interest here is MO(C/X) given by

M (C/X) = B (eec/x) - 17217 ax . (72)

It was shown in [16] that MO(C/X) is related to the

asymptotic nearest neighbour error rate by the relation

R = (1/2) - MO(C/X) . (73)
It also follows that

MO(C/X) = 1 = Q/x) (74)
and R =  Q(C/X) . (75)

Hence, the information measure Q(C/X), which is
obtained by approximating log x by (x-1) in Shannon's
logarithmic equivocation, is also a distance measure
( the harmonic mean between P(X,Cl) and P(X,CZ) ) as
well as the asymptotic nearest neighbour error rate,
and the probability of error of the proportional
prediction randomized decision rule. Since log x <
x-1, it follows that R is bounded above by Shanmon's
equivocation, i.e.,
R <& H@E/X) .
Substituting (74) and (75) into the bounds on R in

(76)

section 3 gives sharp inequalities between the
divergence J and the various equivocation measures,
For example, substituting (75) into (15), (18), and
(20) yields, respectively,
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QC/X) 2 2 expl - 2 H(M) - I(ny, m) 1, an
Qe/x) 2 A/2) 11 -3¢ Ty ﬂz)/2 1 » (78)
d o,
o /T =2 Qe7N
Jmyem)) 2 VIS2QETRY  log 1.9
1-V1 = 2 Q©/X)
8. Application to Distance Measures
1to [21] proposed a family of distance
measures, called the Q-function, given by
Qy = (1/2) = (1/2) 5 P(X) [PC/X) = PLC,/X) ]
*
» L P(C/X) = PUey/X) 1T N dX, (80)
*
where n =1/(2n+1) and n {8 a natural numbey, Of
particular {nterest is Qn given by
Q- (1/2) - a/2
where "
d = JP(X) [ P(Cy/X) = P(C,/X) 17 ax . (81)
Tto [21] showed that
Q" R, (82)
Qg = Y‘o , (83)
and
Qndl < Qn * (84)

Substituting these results into the lower bounds for

R relates the Q-function to the divergence.

Lissack and Fu [22] have investigated
feature selection and estimation of misclassification
using the separability measure

P(X) *

o= P(C,/X) = P(C,/X) |7 dX (85)
for Q0 ., 1t can easily be shown that
P = (1/2) - J1/2 3 (86)
e
and
R = (1/2) - Juf2 (87)

Hence, substituting (B6) and (B7) into the results of

sections 3 and 4 relates J to the divergence J.

Devijver [23], [24] has recently done a lot

of work on the so-called Bayesian distance given by

N - 2
B(C/X) = P(X) &1 [ P(Cilx) 17 dx . (88)
It is obvipus that
B(C/X) =1 ~R . (89)

Hence, using the results of section 3 yields sharp
inequalities between the Bayesian distance and the
divergence. For example, letting B denote B(C/X)

to simplify notation, and substituting (89) into (21)

yiales L TET ] g
J > 2 V2B-1 log| ———————1]"
l-vy2B-1

9. Concluding Remarks

It has been shown that the probability of
misclassification of the proportional-prediction

32

randomized decision rule is equivalent to the error
rate of the deterministic nearest neighbour rule, asyn.
ptotically. Previously, no bounds were available for y

and the divergence J. In this paper better lower

bounds are given for R and J. The tightest boung 1s

given by (21). However, for feature evaluation using

J, (16) and (19) are move useful. Letting

Ry = (1/2) expt =3/2 )}
and

R, = (1/2) - J/s

the best lower bound recommended for future use ig

. T

Similar comments hold true for Po'

R 2z max | R,

for Gausslan dig-
tributions, an upper bound on PQ in terms of J ig

available and is given by [25]

pox /2y ey M (o1
Letting
L = (/2) - 1/2) VT exp(=372)
and

L, = (1/2) -(1/6) /T,
from (30) and (32) , the best available lower bound to
complement (91) above is given by

P LA { Ll » Loy 1 5

e =
which is greatly superior to the previous available
bound, (22).

max

A final comment is in order as regards the
well known least-mean~square-~error (LMSE) design
criterion {26} which has received a great deal of
attention in the pattern recognition literature.

Devijver [27] has shown that for a certain class

of
risk functions the LMSE criterion is equal to R. Under
these conditions, (21) shows that minimizing the LMSE

is equivalent to maximizing a lower bound on the
divergence J. .

Appendix A
Equation (19) can be written in the form
J 2z 41 - 2R) .

To show that (21) is sharper than (19) it must be
proved that

(A1)

1+/1-2R
2/1-2R log 2 4(1-2R). (A2)
1-/1-2%
Making use of the transformation [1—2R]1/2 =x, 0 g%
<1, 1t wust follow that
2x log [(1+x)/(1-x)1 2 4x% ,
which in turn yields
log [(1+x)/(1-x)1 =z 2x . (A3)

It is known that

o

log [(140)/(1=0)] = 2 I, [1/(2k-1)] =25 (a8)

To pto"‘
shown t
2 (2P,

which 1

result.

To pro’

shown

for 0
x= 1/

It ig

1o,

For 2

for i

(3]

{21

13

14

1)

I



gince x 2> O» all terms in (A4) are

2 1
) g it follows that for k=1 (A4) reduces

X
ative an

> o 1€ t
T X no Proving
o Equati°n (16) can be written in the form

3 g B = 2 log ( 2R ) .
y is sharper than (16) it must hold

he result.

(as5)

' o show €04° Gk
0
t
e /0 12 - 2 log (1~ x5, (46)

% 108
is as aboves Making use of the tramsformation

2y,1,1/25 y & 1.
%'y 108 ly/(-y)] 2 - 2 log [4y (A-y) 1 . (A7)

X
ghere it must hold true that

Z(ZZms (a7) and recombining terms results in
n
- (B H(y,1-y) < log 2. @)
H(Y]’y) i{s the entropy function. The maximum of
ere ’
w: 1y)occur5 for y=1/2 and is given by log 2, thus
Hlys 4~
9 proviog the desired result.
Aggendix B
Equation (30) can be written in the form
Jz-zlosf"l’e(l'?e)]‘ (B1)

7o prove that (40) is sharper than (30) it must be

shown that
2 (2p,-1) 108 (p/(1-2 )] 2 - 2 log (42, (1-P )1,

which is of the same form as (A7), thus proving the

result.
Equation (32) can be written in the form
J34(1—2Pe)2. (B2)
To prove that (40) is sharper than (32) it must be

shown that
log [(1-x)/x] 2 2(1-2x) , (B3)
y fro s x g1/2 . Using the transformation
x=1f(z+l), 1 £ z < = , it must be shown that
log z 2 2{(z-1)/(z+1)] . (B4)

1t is known that for z > O

gz = 2 I (1/@eDIGE-D/ @010 L @5

forz2 1, all terms in (B5) are non negative., Hence,

) fork=1 (BS) reduces to (B4), thus proving the result.
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