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Transistors: Moore’s law and Dennard scaling

https://ariaresearch.substack.com/p/spotlight-on-suraj-scaling-compute

kT = 4.11×10−21J  
     = 25.7 mV 
     = 2.479 kJ⋅mol−1 
     = 0.593 kcal⋅mol−1
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~1,000,000 kT   Floating point operation 
~100,000 kT      Neuron spike 
~10,000 kT        Cross chip communication 
~1,000 kT          Transistor switch (SOTA) 
~100 kT             limit of reliable fast information processing? 
~10 kT               Molecular biology / ATP hydrolysis 
~1 kT                 Thermal fluctuations / Landauer's limit

kT = 4.11×10−21J  
     = 25.7 mV 
     = 2.479 kJ⋅mol−1 
     = 0.593 kcal⋅mol−1

Energy Scales



Improving Compute per kT

1) More efficient transistors ? 

2) Algorithms 

  3)  Quantum Computing 

  4)  Novel (classical) Hardware
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Physic based / Thermodynamic Computing

Thermodynamic Computing 1911.01968 Tom Conte et al. 

● Harness nature's innate computational capacity 
○ Use the underlying physics to compute (compute closer to the hardware) 

● Noise is inevitable.  
○ Use as a resource, not a curse
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Stochastic Processing Unit (SPU) 3

FIG. 1: The Stochastic Processing Unit (SPU). (Left panel) The Printed Circuit Board for our 8-cell
SPU. (Right panel) Illustration of eight unit cells that are all-to-all coupled to each other, as in our SPU.
Each cell contains an LC resonator and a Gaussian current noise source, as shown in the circuit diagram on
the top right. The circuit diagram on the bottom depicts two capacitively coupled unit cells.

2. The Stochastic Processing Unit

We now introduce our stochastic processing unit (SPU), which is depicted in the left panel of Fig. 1.
The SPU is constructed on a Printed Circuit Board (PCB). From the lower left corner to the upper right
corner, one can see the line of components corresponding to 8 unit cells (LC circuits), while the components
arranged in the triangle on the upper left correspond to the controllable couplings that couple the unit cells.
We remark that we constructed three nominally identical copies of our SPU circuit, to test the scientific
reproducibility of our experimental results.

The SPU can be mathematically modeled as a set of capacitively-coupled ideal LC circuits with noisy
current driving. The diagram for this model is shown in the right panel of Fig. 1. Doing a simple circuit
analysis reveals that the equations of motion for this circuit are

dI = L�1
V dt (6)

dV = �C�1R�1
V dt � C�1

Idt +
p

20C
�1

N [0, I dt], (7)

where I = (IL1, . . . ILd)
T is the vector of inductor currents and V = (VC1, . . . VCd)

T is the vector of capacitor
voltages. In the above, C is the Maxwell capacitance matrix, whose diagonal elements are Cii = Cii +Pd

j=1 Cij , and whose off-diagonal elements are Cij = �Cij . The values of resistors and inductors in each
cell are represented by the matrices R = RI and L = LI respectively. Finally, N [0, I dt] represents a mean-
zero normally distributed random displacement with covariance matrix I dt and 0 is the power spectral
density of the current noise source. If the magnitude of the noisy driving current is larger than the intrinsic
noise in the system, then 0 can be thought of as an effective temperature control for the thermodynamic
computation.

Equations (6) and (7) can be mapped to the Langevin equations (1) and (2) by making a change of
coordinates. Specifically, we introduce the magnetic flux vector � and the Maxwell charge vector Q, defined
as

� = LI, Q = CV. (8)

As shown in the Supplemental Information, � and Q are canonically conjugate coordinates, with � playing
the role of position and Q playing the role of momentum. We also introduce an effective inverse temperature
parameter � = �

�1
0 . In terms of these variables, Eqs. (6) and (7) become

d� = C�1
Q dt (9)

dQ = �L
�1� dt � R

�1C�1
Q dt + N [0, 2R

�1
�

�1I dt]. (10)

It is clear that Eqs. (9) and (10) are equivalent to (1) and (2) when we make the identifications x = �,
p = Q, M = C, � = R

�1, and U(x) = U (�) = 1
2�TL�1�. In these coordinates the Hamiltonian, without
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Stochastic Processing Unit Dynamics

Overdamped or Underdamped Langevin dynamics
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FIG. 4: Effect of sampling rate and number of samples on sample quality. The y-axis plots the
error on the covariance matrix, namely the average relative Frobenius error per matrix element. The left
panel varies the number of samples, while the right panel varies the sampling time (i.e., the total length of
time over which one draws samples). Samples are taken from the SPU with all positive couplings turned on
and with the unit cell capacitances in configuration 3.

B. Gaussian sampling

Let us describe how to perform Gaussian sampling with our thermodynamic computer. Consider a zero-
mean multivariate Gaussian distribution (since we can always translate the samples by a constant vector to
generate a non-zero mean):

N (~x|⌃) =
1p

(2⇡)N |⌃|
exp

✓
�

1

2
~x

T⌃�1
~x

◆
, (15)

where ⌃ is the covariance matrix. Here we consider the case where the user provides the precision matrix
P = ⌃�1 associated with the desired Gaussian distribution (See Supplemental Information for the alternative
case where the user provides the covariance matrix ⌃.)

The Hamiltonian for the coupled oscillator system (see Supplemental Information for details) is given by:

H

⇣
~I, ~V

⌘
=

1

2
~V

TC~V +
1

2
~I

TL~I, (16)

where ~I is the vector of currents through the inductors in each unit cell, ~V is the vector of voltages across the
capacitors in each unit cell, C is the Maxwell capacitance matrix and L is the inductance matrix, respectively
given by

Ckl =

(P
j Ckj if k = l

�Ckl if k 6= l
, and Lkl =

(
Lk if k = l

0 if k 6= l
. (17)

Here, Ckk and Lk are the capacitance and inductance, respectively, of the k-th unit cell, and Ckj for j 6= k

is the capacitance that couples the k-th and j-th unit cells.
At thermal equilibrium, the dynamical variables are distributed according to a Boltzmann distribution,

proportional to exp(�H/kT ), and hence ~V is normally distributed according to:

~V ⇠ N [~0, kTC�1] (18)

Thus, if the user specifies the precision matrix P, then we can obtain the correct distribution for ~V by
choosing the Maxwell capacitance matrix to be:

C = kT P (19)

Hence, this describes how we can map the user-specified matrix to the matrix of electrical component values,
to obtain the desired distribution.
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Hamiltonian

C: Maxwell Capacitance Matrix

L: Inductances

Currents

Voltages
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Thermal Playground
https://app.normalcomputing.ai/composer
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Gaussian Sampling with Stochastic Processing Unit

For harmonic oscillator system, at thermal equilibrium, x is Gaussian distributed:
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Maxwell capacitance matrix (C) and covariance matrix 
are related.
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Matrix Inversion with Stochastic Processing Unit
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https://blog.normalcomputing.ai/posts/2023-11-09-thermodynamic-inversion/thermo-inversion.html

Matrix Inversion with Stochastic Processing Unit
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https://blog.normalcomputing.ai/posts/2023-11-09-thermodynamic-inversion/thermo-inversion.html


Matrix Inverse 
8x8
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Matrix Determinant with Stochastic Processing Unit
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Optimal Control and 
Thermodynamic Geometry

Matrix Determinant with Stochastic Processing Unit
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10

controllable parameters

inverse temperaturefree energy

correlations of conjugate variablespositive semi-definite symmetric matrix
i.e. thermodynamic metric tenser

nonequilibrium 
excess power

linear response
friction tensor

Riemannian Geometry of finite-time thermodynamic control

Sivak & Crooks PRL (2012)
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• Finite time thermodynamics with linear response friction tensor

Sivak & Crooks PRL (2012)

• Steady states, and Drazin inverse derivation

Mandal & Jarzynski (2015)

• Riemannian metric. Minimum dissipation paths are geodesics

    Peter Salamon and Steven Berry (1983), Ruppeiner (1979), F. Weinhold (1975)

• Fisher information and information geometry.

Crooks (2007)

Drazin inverse of the rate matrix

Steady state probabilities

• Wasserstein metric

Chennakesavalu & Rotskoff (2022)

Geometry of thermodynamics
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The first term on the right vanishes, since Rπ = 0. Us-
ing Eq. 11a in the second term, we get a sum of two
terms: (1)

∑

i π̇i lnπi, which is equal to −dS/dt, and
(2) −

∑

i,k πiπ̇k lnπi, which vanishes by conservation of
normalization:

∑

k π̇k = 0. We thus arrive at

β〈Q̇ex〉 = −
dS

dt
+O(ε2), (16)

which implies that in the quasistatic limit (ε → 0, with
∆t ∝ ε−1), Eq. 2 becomes an equality:

∆S +

∫

dtβ(t)〈Q̇ex〉
qs
= 0 (17)

This result is a generalized Clausius equality for qua-
sistatic transitions between nonequilibrium steady states.
An equivalent result was obtained for overdamped
Langevin processes in Ref. [4, 18]. Eq. 17 implies that the
integral

∫

dtβ(t)〈Q̇ex〉 is independent of the quasistatic
path taken from A to B in λ-space, and therefore van-
ishes when the path is cyclic. (Interestingly, if Qhk is
defined as in Refs. [16, 17], then for cyclic paths this in-
tegral is described in terms of a geometric phase [25].)

Recall that reversible equilibrium processes, which sat-
isfy ∆S +

∫

dtβ〈Q̇〉 = 0, are characterized by zero en-
tropy production in the universe: any change in the sys-
tem’s entropy is balanced by a compensating change in its
surroundings. By analogy, in quasistatic nonequilibrium
processes, which satisfy Eq. 17, the entropy change of the
system, ∆S, is balanced by the excess entropy produced
in the reservoir,

∫

dtβ〈Q̇ex〉. (The total entropy pro-
duction in the reservoir diverges in the quasistatic limit,
∫

dtβ〈Q̇〉 → ∞, due to the continual flow of housekeep-
ing heat.) Moreover, just as a system remains arbitrarily
close to equilibrium during a reversible processes, a sys-
tem undergoing a quasistatic nonequilibrium transition
remains arbitrarily close to the nonequilibrium steady
state (∆p ∝ ε). In both cases, equilibrium and nonequi-
librium, the system retraces its path in the reverse order
when it is subjected to the reverse process λ : A ← B;
in this sense, there is no hysteresis. In view of these par-
allels, it is natural to think of quasistatic nonequilibrium
processes as the nonequilibrium analogues of reversible
equilibrium processes, as suggested by Oono and Pani-
coni [3].

Let us now move beyond the quasistatic limit, by in-
cluding the n = 2 term of Eq. 13 in the analysis. Starting
with Eq. 14, we obtain

β〈Q̇ex〉 = −
dS

dt
+
∑

i,j

Rij lnπi

∑

k,l

R+
jk

d

dt

(

R+
klπ̇l

)

(18)

in place of Eq. 16. Integrating with respect to time, we

obtain, after some simplifying steps (see SI),

∆S +

∫

dtβ〈Q̇ex〉

= ∆
∑

i,j

lnπiR
+
ij π̇j −

∫

dt
∑

i,j

πj
d lnπi

dt
R+

ij

d lnπj

dt
.

(19)

If we now assume that dλ/dt = 0 at the start and end
of the process, then the first term on the right of Eq. 19
vanishes. As the steady states π are determined by the
parameters λ, we can rewrite Eq. 19 in the form

∆S +

∫

dtβ〈Q̇ex〉 =

∫

dt λ̇
T
ξ(λ)λ̇

=

∫

dt λ̇
T
ζ(λ)λ̇,

(20)

where ζ = (ξ + ξT )/2 is the symmetric part of a matrix
ξ(λ) whose elements are

ξµν = −
∑

i,j

πj
∂ lnπi

∂λν
R+

ij

∂ lnπj

∂λµ
. (21)

Equation 20 provides the leading correction to Eq. 17,
and is the counterpart of analogous results for slow tran-
sitions between equilibrium states [12, 14, 15].
We now derive a Green-Kubo relation for the elements

of the matrix ζ(λ). Let us define a set of observables

Fµ
i (λ) =

∂ lnπi(λ)

∂λµ
, µ = 1, · · ·K. (22)

When the system is in the steady state πλ, its microstate
i(t) ∈ {1, 2, . . .N} fluctuates in time, hence so does each
Fµ(t) ≡ Fµ

i(t), around a mean value 〈Fµ〉λ = 0. Letting

〈Fµ(0)F ν(t)〉λ denote a correlation function evaluated in
the nonequilibrium steady state, the matrix elements ζµν
can be rewritten as (see SI for details):

ζµν(λ) =
1

2

∫ +∞

−∞

dt 〈Fµ(0)F ν(t)〉λ. (23)

This result relates an excess dissipation coefficient ζµν
to stationary fluctuations in the nonequilibrium steady
state. (Analogously, for near-equilibrium transitions
the friction tensor is determined by equilibrium fluctua-
tions [12].) We emphasize that the steady state in Eq. 23
may be far from thermal equilibrium.
As shown by Prost et al [26], and for general Markov

processes by Hänggi and Thomas [27], an expression sim-
ilar to Eq. 23 describes the linear response of a system
to small perturbations around a given steady state. By
contrast, our analysis applies to slow transitions between
two steady states that may differ substantially.
The left side of Eq. 2 (or Eq. 20) is the ensemble aver-

age of a quantity identified by Esposito et al [28, 29] as
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