
Thermodynamic Linear Algebra
Gavin E. Crooks  Computing

Moore’s law and Dennard scaling

Tr
an

si
st

or



Stochastic Processing Unit (SPU) 3

FIG. 1: The Stochastic Processing Unit (SPU). (Left panel) The Printed Circuit Board for our 8-cell
SPU. (Right panel) Illustration of eight unit cells that are all-to-all coupled to each other, as in our SPU.
Each cell contains an LC resonator and a Gaussian current noise source, as shown in the circuit diagram on
the top right. The circuit diagram on the bottom depicts two capacitively coupled unit cells.

2. The Stochastic Processing Unit

We now introduce our stochastic processing unit (SPU), which is depicted in the left panel of Fig. 1.
The SPU is constructed on a Printed Circuit Board (PCB). From the lower left corner to the upper right
corner, one can see the line of components corresponding to 8 unit cells (LC circuits), while the components
arranged in the triangle on the upper left correspond to the controllable couplings that couple the unit cells.
We remark that we constructed three nominally identical copies of our SPU circuit, to test the scientific
reproducibility of our experimental results.

The SPU can be mathematically modeled as a set of capacitively-coupled ideal LC circuits with noisy
current driving. The diagram for this model is shown in the right panel of Fig. 1. Doing a simple circuit
analysis reveals that the equations of motion for this circuit are

dI = L�1
V dt (6)

dV = �C�1R�1
V dt � C�1

Idt +
p

20C
�1

N [0, I dt], (7)

where I = (IL1, . . . ILd)
T is the vector of inductor currents and V = (VC1, . . . VCd)

T is the vector of capacitor
voltages. In the above, C is the Maxwell capacitance matrix, whose diagonal elements are Cii = Cii +Pd

j=1 Cij , and whose off-diagonal elements are Cij = �Cij . The values of resistors and inductors in each
cell are represented by the matrices R = RI and L = LI respectively. Finally, N [0, I dt] represents a mean-
zero normally distributed random displacement with covariance matrix I dt and 0 is the power spectral
density of the current noise source. If the magnitude of the noisy driving current is larger than the intrinsic
noise in the system, then 0 can be thought of as an effective temperature control for the thermodynamic
computation.

Equations (6) and (7) can be mapped to the Langevin equations (1) and (2) by making a change of
coordinates. Specifically, we introduce the magnetic flux vector � and the Maxwell charge vector Q, defined
as

� = LI, Q = CV. (8)

As shown in the Supplemental Information, � and Q are canonically conjugate coordinates, with � playing
the role of position and Q playing the role of momentum. We also introduce an effective inverse temperature
parameter � = �

�1
0 . In terms of these variables, Eqs. (6) and (7) become

d� = C�1
Q dt (9)

dQ = �L
�1� dt � R

�1C�1
Q dt + N [0, 2R

�1
�

�1I dt]. (10)

It is clear that Eqs. (9) and (10) are equivalent to (1) and (2) when we make the identifications x = �,
p = Q, M = C, � = R

�1, and U(x) = U (�) = 1
2�TL�1�. In these coordinates the Hamiltonian, without
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FIG. 4: Effect of sampling rate and number of samples on sample quality. The y-axis plots the
error on the covariance matrix, namely the average relative Frobenius error per matrix element. The left
panel varies the number of samples, while the right panel varies the sampling time (i.e., the total length of
time over which one draws samples). Samples are taken from the SPU with all positive couplings turned on
and with the unit cell capacitances in configuration 3.

B. Gaussian sampling

Let us describe how to perform Gaussian sampling with our thermodynamic computer. Consider a zero-
mean multivariate Gaussian distribution (since we can always translate the samples by a constant vector to
generate a non-zero mean):

N (~x|⌃) =
1p

(2⇡)N |⌃|
exp

✓
�

1

2
~x

T⌃�1
~x

◆
, (15)

where ⌃ is the covariance matrix. Here we consider the case where the user provides the precision matrix
P = ⌃�1 associated with the desired Gaussian distribution (See Supplemental Information for the alternative
case where the user provides the covariance matrix ⌃.)

The Hamiltonian for the coupled oscillator system (see Supplemental Information for details) is given by:

H

⇣
~I, ~V

⌘
=

1

2
~V

TC~V +
1

2
~I

TL~I, (16)

where ~I is the vector of currents through the inductors in each unit cell, ~V is the vector of voltages across the
capacitors in each unit cell, C is the Maxwell capacitance matrix and L is the inductance matrix, respectively
given by

Ckl =

(P
j Ckj if k = l

�Ckl if k 6= l
, and Lkl =

(
Lk if k = l

0 if k 6= l
. (17)

Here, Ckk and Lk are the capacitance and inductance, respectively, of the k-th unit cell, and Ckj for j 6= k

is the capacitance that couples the k-th and j-th unit cells.
At thermal equilibrium, the dynamical variables are distributed according to a Boltzmann distribution,

proportional to exp(�H/kT ), and hence ~V is normally distributed according to:

~V ⇠ N [~0, kTC�1] (18)

Thus, if the user specifies the precision matrix P, then we can obtain the correct distribution for ~V by
choosing the Maxwell capacitance matrix to be:

C = kT P (19)

Hence, this describes how we can map the user-specified matrix to the matrix of electrical component values,
to obtain the desired distribution.
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Gaussian Sampling with Stochastic Processing Unit

For harmonic oscillator system, at thermal equilibrium, x is Gaussian distributed:
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Maxwell capacitance matrix (C) and covariance matrix 
are related.
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