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Estimating probabilities from counts with a prior of uncertain reliability
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A common problem is that of estimating a discrete prob-

ability distribution, θ = {θ1, θ2, . . . , θk}, given a limited
number of samples drawn from that distribution, summa-
rized by the count vector n = {n1, n2, . . . , nk}, and a rea-
sonable a priori best guess for the distribution θ ≈ π =
{π1, π2, . . . , πk}. (For a general introduction, see Durbin
et al. 2.) This guess may simple be the uniform probability,
πi = 1/k, which amounts to asserting that, as far as we know,
all possible observations are equally likely. At other times,
we may know some some more detailed approximation to the
distribution θ.

For example, we wish to estimate the probabilities of sub-
stituting a pair of amino acid residues by another residue pair,
given the number of times that this substitution has been ob-
served in the training dataset [1] . This probability is hard
to estimate reliably since the distribution is very large with
204 = 160, 000 dimensions. Moreover, many of the possible
observations occur very rarely. However, substitutions at dif-
ferent sites are not strongly correlated, and therefore we may
approximate the doublet substitution probabilities by a prod-
uct of single substitution probabilities. Since the dimensions
of these marginals are relatively small we can accurately es-
timate them from the available data, and thereby construct a
reliable and reasonable initial guess for the full doublet sub-
stitution distribution.

In the common and conventional pseudocount approach, we
assume that the distribution π was estimated from A previous
observations. These pseudocounts, αi = πiA, are then pro-
portionally averaged with the real observations (N =

∑
i ni)

to provide an estimate of θ;

θi =
αi + ni

A + N
. (1)

This prescription is intuitively appealing. When the total num-
ber of real counts is much less than the number of pseudo-
counts (N � A) the prior dominates, and the estimated dis-
tribution is determined by our initial guess, θ ≈ π. In the
alternative limit that the real observations greatly outnumber
the pseudocounts (N � A) the estimated distribution is given
by the frequencies θi = ni/N . However, it is not immediately
obvious how to select A, although many heuristics have been
proposed, including A = 1, A = k (Laplace), and A =

√
N

[e.g. 2–4]. Essentially, this total pseudocount parameter rep-
resents our confidence that the initial guess θ ≈ π is accurate,
since the larger the total pseudocount the more data is required
to overcome this assumption.

Within a Bayesian approach we can avoid this indetermi-
nacy by admitting that, a priori, we do not know how confi-
dant we are that π approximates θ. The probability P (n|θ)
of independently sampling a particular set of observations,
n, given the underlying sampling probability, θ, follows the
multinomial distribution, the multivariate generalization of

the binomial distribution;

M(n|θ) =
1

M(n)

k∏
i=1

θni
i , M(n) =

∏
i ni!

(
∑

i ni)!
. (2)

The prior probability of the sampling distribution P (θ) is
typically modeled with a Dirichlet distribution,

D(θ|α) =
1

Z(α)

k∏
i=1

θ
(αi−1)
i , Z(α) =

∏
i Γ(αi)
Γ(A)

. (3)

where
∑

i θ = 1, αi > 0 and A =
∑

i αi. Note that the mean
of a Dirichlet is

E[θi] =
αi

A
. (4)

Therefore, we may fix the parameters of the Dirichlet prior
by equating our initial guess, π, with the mean prior distribu-
tion: π = α/A. If we can fix the scale factor A, then we can
combine the prior and observations using Bayes’ theorem.

P (θ|n) =
P (n|θ)P (θ)

P (n)
. (5)

Because the multinomial and Dirichlet distributions are
naturally conjugate, the posterior distribution P (θ|n) is also
Dirichlet.

P (θ|n) ∝ M(n|θ)D(θ|Aπ)

∝
k∏

i=1

θ
(Aπi+ni−1)
i ,

= D(θ|Aπ + n) (6)

The last line follows because the product in the previous line
is an unnormalized Dirichlet with parameters (Aπ + n), yet
the probability P (θ|n) must be correctly normalized.

Given multinomial sampling and a Dirichlet prior, the prob-
ability of the data is given by the under-appreciated multivari-
ant negative hypergeometric distribution [2, 5, Eq. 11.23];

P (n) =
∫

dθ P (n|θ)P (θ),

=
∫

dθ M(n|θ)D(θ|Aπ),

=
1

Z(Aπ)
1

M(n)

∫
dθ

20∏
i=1

θ
(Aπi+ni−1)
i ,

=
Z(Aπ + n)
Z(Aπ)M(n)

≡ H′(n|Aπ + n). (7)

Again, the last line follows because the product in the previous
line is an unnormalized Dirichlet with parameters (Aπ + n).
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FIG. 1: The likelihood of observations as a function of the scale
parameter A. With multinomial sampling and a Dirichlet prior the
likelihood of the data follows the negative hypergeometric distribu-
tion, H ′(n|Aπ + n), where n is the count vector of observations, π
is the mean prior estimate of the sampling distribution, and A is a
scale parameter (Eq. 7). Given a large number of observations (here,
N =

P
ni is about 107) the probability of the data is a smooth and

very sharply peaked function of the scale parameter A.

Therefore, the integral over θ must be equal to the correspond-
ing Dirichlet normalization constant, Z(Aπ + n). Note that,
confusingly, the negative hypergeometric distribution is some-
times called the inverse hypergeometric, an entirely different
distribution, and vice versa.

Since we do know a reasonable value for the scale factor A
we cannot use a simple Dirichlet prior. As an alternative, we
explicitly acknowledge our uncertainly about A by building
this indeterminacy into the prior itself. Rather than a single
Dirichlet, we use the Dirichlet mixture;

P (θ|π) =
∫ ∞

0

dA D(θ|Aπ)P (A). (8)

The distribution P (A) is a hyperprior, a prior distribution
placed upon a parameter of the Dirichlet prior. Following the
same mathematics as Eqs. 5-7, we find that the posterior dis-
tribution is the Dirichlet mixture

P (θ|n) =
∫ ∞

0

dA D(θ|Aπ + n)P (A|n) , (9)

where

P (A|n) =
P (A)H′(n|Aπ + n)∫∞

0
dA P (A)H′(n|Aπ + n)

. (10)

In principle, we have to select and parameterize a functional
form for the hyperprior, P (A). For example, an exponential
distribution, P (A) = λ exp(−λA), with mean 1/λ, might
be appropriate. Fortunately, we can often avoid selecting an
explicit hyperprior. In practice, given sufficient data, the prob-
ability of that data P (n|A) is a smooth, sharply peaked func-
tion of A. This is illustrated in figure 1 using 107 observations
of the 160,000 dimensional doublet substitution probability,
where the mean prior distribution is taken to be the product of
singlet substitutions probabilities. If the prior distribution of
A is reasonable, and neither very large nor very small over the
range of interest, then the posterior distribution P (A|n) will
also be very strongly peaked. Moreover, the location of that
peak will be almost totally independent of the prior placed on
A. In this limit the posterior Dirichlet mixture (Eq. 9) reduces
to the single component that maximizes the probability of the
data;

P (θ|n) ≈ D(θ|Aπ + n),
A = argmaxAP (A|n) ≈ argmaxAP (n|A),

P (n|A) = H′(n|Aπ + n). (11)

Here, argmaxxf(x) is the value of x that maximizes that
function f(x).

Given any function of θ, the average of the function across
the posterior distribution (the posterior mean estimate (PME)
or Bayes’ Estimate) minimizes the mean squared error of
that estimate. In particular, the posterior mean estimate of
θ (Eq. 4) is

θPME
i =

Aπi + ni

A + N
. (12)
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