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It has long been known that the entropy of a non-equilibrium thermodynamic ensemble relative to the
canonical ensemble of the same system at thermodynamic equilibrium is the excess free energy, the difference
in free energy between the corresponding equilibrium and non-equilibrium ensembles. Herein we show that
the dual, or reverse, relative entropy of the equilibrium canonical ensemble to the non-equilibrium ensemble
also has a physical interpretation as the excess free energy of a new ensemble that is thermodynamically
dual to the original non-canonical ensemble.

We consider an ensemble B of a system thermally cou-
pled to an idealized heat bath at constant inverse tem-
perature β = 1/kBT , with energy spectrum EB(x), and
probabilities pB(x). This ensemble is out of thermal equi-
librium, and therefore the probabilities are not given by
the canonical ensemble of equilibrium statistical mechan-
ics [1].

pB(x) ̸=
e−βEB(x)

ZB
(1)

We define the ensemble A as the equilibrium thermody-
namic ensemble of the same system, coupled to the same
heat bath, with the same energy spectrum EA(x) = EB(x),
but with canonical probabilities,

pA(x) =
e−βEA(x)

ZA
= e−βEA(x)+βFA . (2)

Here ZA =
∑

x exp(−βEA(x)) is the partition function,
and FA is the free energy of the ensemble A [2], defined
as βFA = β⟨EA⟩A − SA, where S is the entropy of the
ensemble [3–6], SA = −

∑
pA(x) lnpA(x), and ⟨EA⟩A is

the energy spectrum of A averaged over the distribution
of A. For a canonical ensemble the partition function
and free energy are related by βFA = − lnZA, but for a
non-equilibrium non-canonical ensemble this relation no
longer holds, βFB ̸= − lnZB.

The relative entropy (KL-divergence) [7–9] of the en-
semble B relative to the equilibrated ensemble A is the
difference in free energy between them [10–21]. (For a

summary of the history of this result see [22])

D(B∥A) =
∑
x

pB(x) ln
pB(x)

pA(x)
(3)

=
∑
x

pB(x) lnpB(x) −
∑
x

pB(x) lnpA(x)

=
∑
x

pB(x) lnpB(x) −
∑
x

pB(x)(−βEA(x) +βFA)

= −SB + ⟨βEB⟩B −βFA

= βFB −βFA

= βFex
B

Here we define the free energy of a non-equilibrium
ensemble analogously as for an equilibrium ensemble
βFB = β⟨EB⟩B − SB, Note that relative entropy is non-
negative, being zero only if the ensembles are identical.
Thus the excess free energy (the difference between non-
equilibrium and corresponding equilibrium values) is
positive, and the free energy is minimized in thermody-
namic equilibrium, as expected.

The excess free energy is the amount of energy that
would be dissipated if we allowed the system to relax to
thermal equilibrium. It is also the reversible work, the
amount of work that can be extracted by a thermodynam-
ically reversible process connecting ensemble B and A.
To show this it is useful to introduce a third ensemble, C,
that has the same probabilities as B, pB(x) = pC(x), but a
different energy spectrum that ensures that C is also in
thermodynamic equilibrium.

βEC(x) = − lnpB(x) + εc (4)

Here εc is an arbitrary energy offset that will be absorbed
into the normalization constant. It does not effect the
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probability distribution of C, but it does effect what we
think the energy and free energy are. Since the maximum
probability of any state is unity, εc is the lowest energy
the ground state could have.

Although B is a non-equilibrium system we can, in
principle, instantaneously stabilize B by changing the
energy levels of B to match the energy levels of C [16,
17] in a single instantaneous jump. This requires work,
whose average value is also the difference in free energy
between C and B (since the entropies are the same, the
difference is entirely energetic).

β⟨Winst
B→C⟩ =

∑
x

pB(x)
(
βEC(x) −βEB(x)

)
= ⟨βEC⟩C − ⟨βEB⟩B

= βFC −βFB (5)

In a sense this instantaneous transformation is thermody-
namically reversible, since there is no change in entropy,
provided that we do not allow any time for the system to
relax towards equilibrium and dissipate energy.

We can now convert the equilibrium ensemble C to A
by a quasi-static thermodynamically reversible transfor-
mation, for which the work done during this reversible
transformation is equal to the difference in free energies.

βWrev
C→A = βFA −βFC (6)

Combining the instantaneous stabilization of B to C, fol-
lowed by the quasi-static transformation of C to A, we see
that the excess free energy is indeed the total reversible
work of this process, justifying extending the definition
of free energy to non-equilibrium ensembles.

Another approach to understanding that the excess free
energy bounds the work is via the Jarzynski identity [23–
25] 〈

e−βW
〉

A,Λ
= e−β∆F (7)

Here W is the work done on a system that is initially in
the equilibrium A, and ∆F is the change in the equilib-
rium free energy induced by the protocol Λ. The Jarzyn-
ski identity implies that the average excess work is non-
negative (which essentially a statement of the second law)
via an application of Jensen’s inequality.

⟨βW⟩A,Λ ⩾ β∆FΛ (8)

The Jarzynski identity assumes that the system starts in
thermal equilibrium. But we can make a small change
and obtain a similar relation where we start the process
from a non-equilibrium ensemble. First we write the
Jarzynski relation more explicitly.∑

x0,X

pA(x0) p(X|Λ, x0) e−βW[X,Λ] = e−β∆FΛ (9)

Here x0 is the initial state of the system, and X is the
trajectory of the system during the driving process.

We can now substitute in a different initial probabil-
ity distribution over states, moving extra terms to the
exponential

∑
x0,X

pB(x0)p(X|x0) e
−βW−ln pB(x0)

pA(x0) = e−β∆FΛ (10)

which leads to a Jarzynski-like expression that is valid
for any initial distribution.〈

e
−βW−ln pB(x0)

pA(x0)

〉
B,Λ

= e−β∆FΛ (11)

Then by Jensen’s inequality we have

⟨βW⟩B,Λ ⩾ β∆FΛ −D(B∥A) , (12)

⩾ β∆FΛ −βFexB . (13)

If we now further assume that the initial and final equi-
librium ensembles associated with the protocol Λ are
both A, then we have that the work done, starting from a
non-equilibrium ensemble, is bounded by the free energy
difference between the equilibrium and non-equilibrium
ensembles.

⟨βW⟩B,Λ ⩾ βFA −βFB (14)

(This argument from the Jarzynski identity is similar to
those found in [15, 26])

These preceding arguments show that it is proper to
define the free energy of a non-equilibrium ensemble
as βF = S− β⟨E⟩, and that this free energy is related to
the relative entropy between non-equilibrium and corre-
sponding equilibrium ensembles (3). Howsoever, we are
intending to give a thermodynamic interpretation for the
reverse, or dual, relative entropy D(A∥B). To this end we
introduce a fourth ensemble D. This ensemble has the
same probability distribution as A, and the same energy
spectrum as C.

pD(x) = pA(x) =
e−βEB(x)

ZB
(15)

βED(x) = βEC(x) = − lnpB(x) + εc (16)

This new ensemble D is thermodynamically dual to en-
semble B in that the roles of entropy and energy have
been interchanged: the probabilities of D are defined by
the energies of B, and the energies of D are defined by
the probabilities of B.

The interrelation of these four ensembles is summa-
rized by the following diagram.
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pA(x) =

pD(x)

pB(x)

= pC(x)

EA(x) = EB(x) ED(x) = EC(x)
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We are now in a position to give a thermodynamic
interpretation of D(A∥B). Since the probability distribu-
tion of A is the same as D, and that of B the same as
C, it follows that D(A∥B) = D(D∥C). But since C is the
canonical equilibrium that the non-canonical ensemble D
would relax to (they have the same energy spectrum and
bath temperature), it follows that D(D∥C) is the excess
free energy of the dual ensemble D.

D(A∥B) = D(D∥C) = βFD −βFC = βFex
D (17)

To make the concept of a thermodynamically dual
ensemble more concrete, we can introduce the notation
B∗ = D. The corresponding equilibrated ensemble can
be notated as Beq = A, and the instantaneously stabilized
ensemble as Binst = B∗eq = C.

pB⋆(x) =
e−βEB(x)

ZB
(18)

βEB⋆(x) = − lnpB(x) +βFBeq (19)

We have also fixed the energy offset εB⋆ = βFBeq . This is
convenient (but not thermodynamically necessary) as it
ensures that that the free energies of the equilibrated and
stabilized ensembles are the same, βFBinst = βFBeq , and
therefore that the thermodynamic duality is an involution
B∗∗ = B. Ensembles in thermodynamically equilibrium
are self-dual Beq⋆ = Beq.
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