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A Generalized Affine Gap Model Significantly Improves
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ABSTRACT Sequence alignment underpins
common tasks in molecular biology, including ge-
nome annotation, molecular phylogenetics, and ho-
mology modeling. Fundamental to sequence align-
ment is the placement of gaps, which represent
character insertions or deletions. We assessed the
ability of a generalized affine gap cost model to
reliably detect remote protein homology and to
produce high-quality alignments. Generalized af-
fine gap alignment with optimal gap parameters
performed as well as the traditional affine gap
model in remote homology detection. Evaluation of
alignment quality showed that the generalized af-
fine model aligns fewer residue pairs than the tradi-
tional affine model but achieves significantly higher
per-residue accuracy. We conclude that generalized
affine gap costs should be used when alignment
accuracy carries more importance than aligned se-
quence length. Proteins 2005;58:329-338.
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INTRODUCTION

The alignment of biological sequences occupies a central
role in modern molecular biology. Fundamental to biologi-
cal sequence alignment is the incorporation of gaps, which
represent insertions or deletions of sequence characters.
Needleman and Wunsch' introduced the first method of
finding the optimal gapped global alignment of two protein
sequences. Under the Needleman—Wunsch algorithm,
matches between identical or similar characters are as-
signed positive scores, whereas a penalty is subtracted for
each gapped region.

The first gap penalty scheme in common use assigned a
cost of bk to each gap, where b is the cost per gapped
character and & is the gap length. This length-proportional
gap model was supplanted by Smith and Waterman’s
affine gap cost.?® The affine gap model, which can be
implemented with equivalent computational complexity to
length-proportional gap costs,* charges a penalty of a + bk
for each gap, where a is the gap open cost, b is the penalty
per gapped character, and % is the gap length. Fitch and
Smith® argued for the use of affine gaps in place of the
simple length-proportional gap model, providing several
examples where affine gaps allow for a biologically correct
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alignment and length-proportional gaps do not. The supe-
riority of affine over length-proportional gap costs is
reflected by the nearly ubiquitous use of affine gaps by
pairwise methods (e.g.,, BLAST, FASTA,” and
SSEARCH"). However, although easy to implement and
fast to calculate, traditional affine gaps almost certainly do
not model the evolution of insertions and deletions very
closely.®7'2 For this reason, new gap models have contin-
ued to be developed.®~'* Qian et al.’? provided evidence
that a quadruple affine gap penalty would better model the
distribution of gap lengths in structural alignments. Alts-
chul'! introduced a generalized affine gap model that
allows for the inclusion of unaligned regions within larger
alignments. We focus on this model in the present work.

Observations of protein structure motivated the develop-
ment of generalized affine gap costs. Distantly related
proteins often share sequence and structure similarity in
functionally important regions but have diverged else-
where (see Fig 1). Frequently, these divergent regions lack
any meaningful alignment, and attempting to optimally
align them detracts from the overall quality of a sequence
alignment. Generalized affine gaps aim to leave dissimilar
regions in proteins unaligned in order to better align
regions that are more closely related. In addition to this
gap model, other methods of exploiting low-similarity
segments of protein sequence alignment have been intro-
duced.'”'®

Like traditional affine gap costs, the generalized affine
model charges a fixed cost for the existence of a gap (which
we call a), as well as a cost per gapped residue (which we
call ). Unaligned residue pairs may be included in the gap
and charged an additional penalty (c). The cost for a gap
involving %, residues in one sequence and %, in the other,
with &, = k,, is a + b(k; — ky) + ck,. Unlike many other
recently proposed gap models,®1%12 generalized affine
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Fig. 1. Movitation for generalized affine gap costs. Shown here are
fragments of 2 nudix proteins [left, PDB ID: 1G0S'®; right, PDB ID:
1HZT'] that are homologous but possess no recognizable similarity in
the loop region. The lack of similarity in such regions often impedes
accurate and meaningful alignment.

gaps may be incorporated into global Needleman—Wun-
sch’ or local Smith—-Waterman? alignment without increas-
ing the space or time complexity. See Altschul'! for a more
detailed description.

Altschul evaluated the performance of the generalized
affine gap model in remote homology detection and align-
ment quality. Testing distant homolog identification, he
selected parameters for the traditional and generalized
affine gap models that resulted in the two models giving
identical distributions of scores to unrelated sequences.
Notably, when 222 evolutionarily related sequence pairs
were aligned with these gap parameters, generalized
affine gaps assigned average statistical scores 50% higher
than those assigned by traditional affine gaps. This sug-
gests that generalized affine gaps may offer improved
homology detection over the traditional affine model.
Assessing alignment quality in a test of 26 sequence pairs,
Altschul demonstrated that generalized affine gap align-
ments conform better to PSI-BLAST'® reference align-
ments than do traditional affine gap alignments. This
finding hints at a possible improvement in alignment
accuracy.

Altschul’s results argue for the inclusion of generalized
affine gaps in methods that employ pairwise sequence
comparison, such as BLAST and PSI-BLAST. However,
the more recent study of Schaffer et al.,>° examining
653,123 profile—sequence comparisons, reported that gen-
eralized affine gaps bring no improvement in homology
detection ability to PSI-BLAST. The lack of consensus and
the use of relatively small test sets left the suitability of
this theoretically attractive gap model in doubt. Addition-
ally, neither study attempted to find optimal parameters
for the generalized model, and neither employed a se-
quence-independent standard for benchmarking. Sequence-
dependent standards create a “chicken and egg prob-
lem,”! in which newer methods may be penalized for
correctly identifying results missed by older methods.

In this study, we rigorously evaluate the homology
detection ability of pairwise local alignment using general-
ized affine gap costs. The SCOP database,?*?3 a set of
proteins whose evolutionary relationships have been in-
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Fig. 4. Coverage versus error of 4 gap cost models. After selecting the
optimal amino acid substitution matrix and gap parameters for each model
(see Table 1), we compared their performance on the test set. Remote
homology detection coverage is shown at various error rates.

ferred through structural analysis, forms the basis of our
evaluation (see Methods section). SCOP provides a se-
quence-independent standard for benchmarking, and it
allows us to make 4,761,124 sequence comparisons: 21,446-
fold more than employed by Altschul and 7-fold more than
employed by Schaffer et al. After determining the optimal
gap parameters for each model, we show that generalized
affine gaps offer a statistically insignificant improvement
in homology detection over traditional affine gaps. We also
assess, using 1000 pairwise structural alignments from
the FSSP database,?* the quality of alignments produced
by the traditional and generalized affine gap models. The
FSSP test set contains 38-fold more alignments than used
in Altschul’s study of alignment quality. Moreover, its
structural alignments represent a sequence-independent
benchmark. Our results indicate that the generalized
model is more conservative than the traditional model in
aligning residues, and consequently achieves significantly
higher alignment accuracy. We conclude by suggesting
applications where generalized affine gap costs should be
used.

METHODS
Remote Homology Detection

To assess each gap model’s ability to reliably detect
evolutionarily distant protein homology, we performed the
following analysis. First, a set of proteins whose evolution-
ary interrelations are known was assembled from the
SCOP database (version 1.61),2%?3 which provides a hier-
archical classification of the structural domains of all
solved protein structures. SCOP categorizes protein do-
mains at the level of class, fold, superfamily, and family. If
two domains belong to different classes or folds, they may
safely be considered unrelated.?® When of the same super-
family or family, proteins are considered homologous.?”
We treat the evolutionary relationship of domains classi-
fied in the same fold but different superfamily as undeter-
mined, and do not consider them in our benchmarking.

To focus our study on distant homologs, we used only
protein domain sequences in SCOP not more than 40%
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TABLE 1. Evaluated Gap Parameters and Amino Acid Substitution Matrices

Amino Acid Substitution

Gap Model Matrix

Penalty per
Gapped Unaligned
Gap Open Penalty (a) Residue (b) Residue Pair (¢)

Penalty per

Ungapped g(k) = © BLOCKS 13+ BLOSUMS65
VTML 190
VTML 210
VTML 240
Length-proportional g(k) = bk BLOCKS 13+ BLOSUM65
VTML 190
VTML 210
VTML 240

Traditional affine g(k) = a + bk BLOCKS 13+ BLOSUM65

VTML 190
VTML 210
VTML 240

Generalized affine g(k,, k) = a
+ bk, — ko) + cky

BLOCKS 13 + BLOSUM65

VTML 190
VTML 210
VTML 240

[e¢] oo o]

0 1,4,7...67 %

50, 60, 70, 80, 90,
100, 110, 120, 130,
140

4,7,10,13 %

50, 60, 70, 80, 90,
100, 110, 120, 130,
140

4,7,10,13 0,3,6,9,12,15,
18,21, 24,

27,30

The given gap parameters and substitution matrices were assessed for remote homology detection within the training set under the gap models
indicated. In order to explore small integer gap penalties, we used 1/20 bit scaling for all parameters and matrices.
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Fig. 2. Coverage at increasing penalty per unaligned residue pair.
Remote homology detection coverage (at 0.01 errors per query) peaks at
penalty per unaligned residue pair = 3, and decreases as the penalty is
raised. When the unalign penalty is infinite, the generalized affine gap
model reduces to traditional affine gaps. Shown here are data from local
alignment on the training set with the VTML190 substitution matrix (1/20
bits), gap open penalty = 80, and penalty per gapped residue = 10.

identical to each other. The ASTRAL compendium?¢-28
conveniently provides such a set of SCOP protein domains.
The 40%-filtered set was divided into training (2592
sequences) and test (2182 sequences) subsets, where each
subset contains all sequences of every other fold, and there
are no sequences in the intersection of the two subsets.
Sequences are available at http:/compbio.berkeley.edu.
We evaluated gap models by using them to perform local
alignments of all pairs of sequences in a given data set
using several different substitution matrices. These were
BLOSUMS65, reparameterized from the BLOCKS 13+
database??:3° [which is the most effective BLOSUM matrix
on this data set (Price, Crooks, Green, and Brenner,

unpublished)], and several VTML matrices®"-3? represent-

ing different divergence times. VIML is essentially a
reparameterized Dayhoff PAM matrix and, as such, unit
time corresponds to 1% point accepted mutation (PAM).
For each sequence an ordered list of putative homologs
was generated by ranking alignments by e-value. These
significance scores were calculated using the method of
Bailey and Gribskov.?® An e-value cutoff can be chosen to
dictate which members of the list are (correctly or incor-
rectly) considered to be homologs. As in Brenner et al.?*
and Green and Brenner,?® we measured the coverage and
errors per query for every cutoff. Coverage is the fraction of
true homologous relationships (true positives) found by
the method to be evaluated. Errors per query, a measure of
the false-positive rate, indicate the number of sequence
pairs incorrectly found to be homologous by the alignment
method divided by the number of sequences in the data set.

The number of relationships within a given superfamily
grows quadratically with superfamily size. Therefore, any
representational biases present within the database are
exacerbated, and large families dominate the overall re-
sults.?® To compensate for this, we reweighted each correct
pairwise relation by 1 /(n — 1), where n is the number of
sequences and (n — 1) is the number of true homologs per
sequence in a superfamily. Thus, each superfamily was
weighted in linear proportion to its size.

The statistical significance of our results were estimated
with Bayesian bootstrap resampling®®3* (Price, Crooks,
Green, and Brenner, unpublished). In brief, we generate 500
replicas of the original sequence data set. In a traditional
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Fig. 3. Comparison of traditional affine and generalized affine gap parameter space. (a) We determined coverage on the training set at 0.01 errors
per query for a range of traditional affine gap parameters. The peak coverage of 24.15% occurs at gap open penalty = 80 and penalty per gapped
residue = 7. (b) To identify the optimal parameters for generalized affine gaps, we searched over a three-dimensional space. The spatial relationship

between the two-dimensional planes given in (c), (d), and (e) is depicted. (

c—e) Shown here are orthogonal slices through the generalized affine gap

parameter space. Slices intersect at the coverage peak (25.52%), which is found at gap open penalty = 80, penalty per gapped residue = 10, and

penalty per unaligned pair = 3. The penalty per unaligned residue pair is fix

ed at 3 in (c); the gap open penalty in (d) is 80, and the penalty per gapped

residue in (e) is 10. All data are from local alignment using the VTML190 substitution matrix.

bootstrap with resampling, each sequence is included in a
replica 0, 1, 2, or more times. However, for our application,
the zero-occupancies introduce significant bias into the re-
sults. Therefore, rather than giving sequence-discrete
weights, within each replica, each sequence is assigned a
weight drawn from a Dirichlet distribution. Consequentially,
each data replica generates a different answer, and the
replica ensemble provides a Bayesian posterior estimate of
the correct result. Using the paired ¢ test, we compared the
ability of each model to reliably identify homologous relation-
ships within the 500 resampled data sets. At a given error
rate, we report the observed difference in coverage and a
confidence interval that indicates the significance of the
result.

Alignment Quality

We assessed the quality of pairwise alignments gapped
under either scheme by comparing them against trusted

structural alignments derived from the FSSP database.?*
Our first set of trusted alignments, which we call ES1, is a
subset of the compilation used by Edgar and Sjolander,>®
whose data set contains alignments between pairs in FSSP
meeting the following criteria: pairwise identity = 30%,
Dali®® Z score = 15, root-mean-square deviation (RMSD) <
2.5 A, and agreement between the combinatorial extension
(CE)®” and Dali structural aligners along at least 50
aligned residue pairs. Alignments were filtered so that no
two sequences aligned to a common third sequence had
greater than 30% identity. Of the resulting 588 align-
ments, we randomly chose 500 to include in our analysis.
The ES1 set of aligned sequences contains pairs of high
structural similarity. To include more structurally di-
verged proteins, we employed a second data set (ES2), also
derived from FSSP and assembled by Edgar and Sjolan-
der.2® They selected sequence pairs that met the following
criteria: pairwise identity = 30%, Dali Z score = 8 and =
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TABLE II. Optimal Gap Parameters and Amino Acid

Substitution Matrices
Ungapped Alignment
Substitution Matrix Optimum Gap Coverage
Parameters
VTML190 — 0.173
VTML240 — 0.166
BLOCKS 13 + BLOSUM65 — 0.158
VTML210 — 0.154
Length-Proportional Gap Model

Substitution matrix Optimum Gap Coverage

Parameters (per

gapped residue)
VTML190 58 0.225
VTML240 52 0.222
VTML210 61 0.214
BLOCKS 13 + BLOSUM65 58 0.208

Traditional Affine Gap Model

Substitution Matrix Optimum Gap Coverage

Parameters

(open/per gapped

residue)
VTML190 80/7 0.241
VTML240 80/7 0.239
VTML210 90/10 0.234
BLOCKS 13 + BLOSUM65 90/10 0.225

Generalized Affine Gap Model

Substitution Matrix Optimum Gap Coverage

Parameters

(open/per gapped

residue/per

unaligned pair)
VTML190 80/10/3 0.245
VTML240 80/10/3 0.242
VTML210 90/10/6 0.236
BLOCKS 13+ BLOSUMS65 110/7/3 0.227

For each gap model and substitution matrix, the gap parameters
achieving the highest coverage of remote homologs within the training
set at 0.01 errors per query are presented along with the relevant
coverage values.

12, RMSD = 3.5 A, and alignment length = 50. Because
many of the resulting pairs contained sequences of ques-
tionable evolutionary relatedness, they additionally re-
quired that aligned sequences be homologous according to
the SCOP test. Sequences were filtered in the same
manner as in the first set, and 500 of the resulting
alignments were selected at random to use in benchmark-
ing.

We used two scores to measure the quality of a given
sequence alignment with respect to a gold standard refer-
ence alignment. The modeler’s score,??° also referred to
as SP,3>*1 represents the number of correctly aligned
residue pairs divided by the length of the reference align-
ment. This measure does not penalize overalignment. We
also calculated the developer’s score,>*%° called PS by
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others,?®*! as the number of correctly aligned residue

pairs divided by the length of the alignment being tested.
This measure does not penalize underalignment, and
neither score discriminates between slightly offset and
completely incorrect alignments. In the case of perfect
agreement between the test and reference alignments,
both scoring methods produce their maximum value: 1.
The developer’s and modeler’s scores possess a minimum
value of 0 for alignments in which no residue pairs are
correctly aligned.

RESULTS AND DISCUSSION
Remote Homology Detection

To conduct an unbiased evaluation, we divided our data
set into test and training subsets (see Methods section).
We used the training set to evaluate the remote homology
detection ability of a range of gap parameters and amino
acid substitution matrices (in 1/20 bit scaling)*°~32 to be
used in conjunction with the gap models (see Table I). Each
sequence in the training set was compared to every other,
and putative homologs were ranked by e-value (see Meth-
ods section). Following previous studies,?2® we report the
proportion of correctly identified homologs (coverage) at an
error rate of 0.01 errors per query. Coverages have been
linearly normalized to correct for representational biases
inherent in SCOP (see Methods section and Green and
Brenner?®). As the traditional affine gap model is a special
case of the generalized model with unalign penalty = o, we
examined remote homology detection as the penalty per
unaligned residue pair is increased from 0 to o (see Fig. 2).
Coverage of remote homologs at the 1% error rate rises as
we move away from unalign penalty = 0, peaks at unalign
penalty = 3, and slowly decreases as we move toward
unalign penalty = « (equivalent to traditional affine gaps).
This trend was seen with all 4 substitution matrices.

Analysis of all training set results (included as Supple-
mentary Data) indicates that among the 4 tested substitu-
tion matrices (see Table I), VTML190%132 best detects
remote homology, regardless of the gap model. For tradi-
tional and generalized affine gap costs, gap open penalties
ranging from 80 to 100, and penalties per gapped residue
of 7 or 10 consistently produce the best results (see Fig. 3).
The traditional affine gap model reaches its peak coverage
of 24.15% with the VITML190 matrix, gap open cost = 80,
and penalty per gapped residue = 7. The generalized affine
gap model reaches a higher peak coverage of 24.52% with
the same matrix, same gap open cost, penalty per gapped
residue = 10, and penalty per unaligned residue pair = 3.
Table II presents the optimum parameters and substitu-
tion matrix for each gap model. Finally, we note that when
the penalty per unaligned residue pair is twice the penalty
per gapped residue, the generalized affine gap model
reduces to the commonly used traditional affine gap imple-
mentation that allows a gap in one sequence immediately
adjacent to a gap in the other. While the traditional affine
model, as strictly defined, does not allow contiguous gapped
regions in opposite sequences,*? we detected no difference
in remote homology detection between the commonly used
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area contains the 95% confidence interval. Because zero lies within the confidence interval, we deem the
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sets.

and strictly defined implementations of traditional affine
gap penalties (see Supplementary Data).

Using the gap parameters and amino acid substitution
matrices that performed best on the training set, we
evaluated the ability of all 4 gap cost models to detect
distant evolutionary relationships within the test set (see
Fig. 4). Following the progression of gap models from less
sophisticated to more sophisticated, we see diminishing
improvements in performance. Local alignment with
length-proportional gap costs offers substantial improve-
ment over ungapped local alignment, increasing coverage
at the 1% error rate (0.01 errors per query), from 19.6% to
24.4%. Traditional affine gaps achieve a smaller gain,
raising coverage at the same error rate to 25.5%. General-
ized affine gaps bring a miniscule elevation in coverage to
25.7%. These results can be compared to the coverage
difference between BLAST (21.7%) and FASTA (23.8%).
Based on the trend of decreased performance gain with
increased gap model sophistication, we predict that the
more complex gap models presented elsewhere will not
substantially improve remote homolog detection.

To assess the statistical significance of the small ob-
served difference in homology detection between tradi-
tional and generalized affine gaps, we employed the Bayes-
ian bootstrap (Price, Crooks, Green, and Brenner,
unpublished). Under the bootstrap procedure, we re-
sampled our test data set 500 times. For every resampled
data set, we evaluated the difference in coverage between
the traditional and generalized models at the 1% error

rate. A histogram of all 500 coverage differences is shown
in Figure 5, with the individual coverages given in the two
inset histograms. The coverage differences were fitted to a
normal curve with a mean of —8.90 X 10~ * and a standard
deviation of 1.47 X 10~ 2. Because 0 (no difference) lies
within the 95% confidence interval of coverage difference
([-3.78 X 1073, 2.00 X 10~ 3]), the difference in perfor-
mance between the 2 gap models is not statistically
significant (P value = 0.545). As a positive control, we
confirmed that our bootstrap procedure detects a statisti-
cally significant performance difference between length-
proportional and traditional affine gap costs (data not
shown).

Alignment Quality

We measured the quality of protein sequence align-
ments gapped under the traditional and generalized affine
models as compared to reference structural alignments
compiled by Edgar and Sjélander®**® from the FSSP
database.?* The ES1 data set®® contains 500 pairwise
structural alignments between proteins of less than 30%
sequence identity but of high structural similarity. The
ES2 data set?® differs from ES1 in that its pairs of proteins
have diverged structurally and thus contain more inser-
tions or deletions (see Methods section). Using gap param-
eters and substitution matrices optimized for homology
detection, we generated local alignments with traditional
and generalized affine gaps for the pairs of proteins in both
data sets. Next, we scored these alignments against the
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FSSP reference structural alignments using two measures
of alignment quality. The developer’s score®>*° measures
the fraction of the reference structural alignment that is
correctly aligned and included in the sequence alignment
being tested. This score is calculated as (number of aligned
residue pairs in the test alignment that are correctly
aligned with respect to the reference alignment)/(number
of aligned residue pairs in the reference alignment). A
second measure of quality, the modeler’s score,3?*® indi-
cates the fraction of residue pairs in the test alignment
that are aligned correctly with respect to the reference

alignment. It is defined as (number of residue pairs in the
test alignment that are correctly aligned with respect to
the reference alignment)/(number of aligned residue pairs
in the test alignment).

On the ES1 data set, traditional affine gaps outper-
formed generalized affine gaps when measured by the
developer’s score [see Fig. 6(a)l. Traditional affine gaps
scored on average 0.6677, whereas generalized affine gaps
averaged 0.6452. This difference was statistically signifi-
cant, as shown by the two-tailed Wilcoxon signed-rank
test*® (P value = 2.2 X 1072°). When alignments were
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Fig. 7. Alignment lengths. Number of aligned residue pairs is presented in (a) and (b), with generalized affine gaps (GAs) on the vertical axis and

traditional affine gaps (TAs) on the horizontal axis. Total number of residue pai
(d). Averages are inset in the plots.

measured by the modeler’s score, generalized affine gaps
outperformed traditional affine gaps [see Fig. 6(b)]. The
average scores over all sequence pairs in the ES1 data set
were 0.6978 and 0.7311 for the traditional and generalized
models, respectively. Again, the two-tailed Wilcoxon test
demonstrated the statistical significance of the score differ-
ence (P value = 1.6 X 10739),

We repeated the analysis on the ES2 data set and found
similar results [see Figs. 6(c and d)]. Traditional affine
gaps outperformed generalized affine gaps on the develop-
er’s score (0.2245 vs 0.2173 average), whereas generalized

irs included in an alignment (both unaligned and aligned) is given in (c) and

affine gaps earned the higher modeler’s score (0.3056 vs
0.3171 average). The P value for the developer’s score
comparison was 0.0285; the modeler’s score was 8.2 X
10~ 7. These results indicate that the generalized affine
gap model aligns fewer residue pairs but is more precise in
accurately matching the pairs it does align.

Examination of the lengths of alignments confirmed
that the generalized affine model aligns fewer residue
pairs than the traditional affine model aligns [see Fig. 7(a
and b)]. This difference did not stem from the generalized
alignments covering a shorter portion of the protein se-
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quences being aligned; generalized affine gaps covered at
least as large a portion of the concerned sequences as
traditional affine gaps covered [see Fig. 7(c and d)]. The
difference in number of aligned residue pairs is a result of
generalized affine gaps’ unique ability to include un-
aligned residues within larger alignments.

CONCLUSIONS

This article evaluates the remote homology detection
ability and alignment quality of generalized affine gap
costs for protein sequence alignment. We identify the
amino acid substitution matrix and gap parameters opti-
mal for pairwise remote homolog detection with general-
ized affine gaps, and show that generalized affine gaps
offer a statistically insignificant performance advantage
over the currently used traditional affine model. This
finding agrees with recent work suggesting that increas-
ingly sophisticated methods of pairwise sequence compari-
son offer little or no improvement in remote homology
detection ability over established methods (Price, Crooks,
Green, and Brenner, unpublished results).

Alignments produced by the generalized affine gap
model include fewer aligned residue pairs but attain
significantly higher per-residue accuracy than traditional
affine gaps alignments. It is notable that the generalized
model uses less of the available sequence information,
aligning on average 7.6% fewer residue pairs, but reliably
identifies distant evolutionary relationships as well as
traditional affine gap costs. This suggests that generalized
affine gap costs align the residues most important for
determining evolutionary relatedness. It also suggests
that the improved alignment of related regions compen-
sates for the loss of information due to unaligned residue
pairs. We advocate the use of generalized affine gaps costs
for protein sequence alignment where alignment accuracy
carries more importance than number of aligned residues.
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