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Noisy intermediate-scale quantum computing devices are an exciting platform for the exploration
of the power of near-term quantum applications. Performing nontrivial tasks in such a framework
requires a fundamentally different approach than what would be used on an error-corrected quantum
computer. One such approach is to use hybrid algorithms, where problems are reduced to a param-
eterized quantum circuit that is often optimized in a classical feedback loop. Here we described one
such hybrid algorithm for machine learning tasks by building upon the classical algorithm known
as random kitchen sinks. Our technique, called quantum kitchen sinks, uses quantum circuits to
nonlinearly transform classical inputs into features that can then be used in a number of machine
learning algorithms. We demonstrate the power and flexibility of this proposal by using it to solve
binary classification problems for synthetic datasets as well as handwritten digits from the MNIST
database. We can show, in particular, that small quantum circuits provide significant performance
lift over standard linear classical algorithms, reducing classification error rates from 50% to < 0.1%,
and from 4.1% to 1.4% in these two examples, respectively.

Introduction— Interest in adapting or developing
machine learning algorithms for near-term quantum com-
puters has grown rapidly. While quantum machine learn-
ing (QML) algorithms offering exponential speed-ups on
universal quantum computers have been known for some
time [1–7], recent interest has increasingly focused on al-
gorithms for noisy, intermediate-scale quantum (NISQ)
computers [8–12]. These algorithms aim to minimize the
complexity of the required quantum circuit so that they
may be executed by NISQ devices while still yielding
meaningful results. This is in contrast to approaches that
allow for arbitrarily large circuits of width and depth that
grow polynomially in the input size. These approaches
can only yield meaningful answers if errors are suppressed
to rates that are inversely proportional to the circuit size,
something that is not possible with NISQ devices and re-
quires fault tolerance [13–15].

Many of the proposed approaches use a so-called hy-
brid model for NISQ computing, where the quantum pro-
cessor is considered an expensive resource and is exten-
sively supported by classical computing resources. In
particular, many of these proposals use a variational
approach, where parameters of a small quantum cir-
cuit are optimized using classical optimization algorithms
which use measurement outcomes to compute a cost func-
tion [11, 16–21]. While these closed-loop hybrid ap-
proaches move the computational cost of the optimiza-
tion algorithm off of the quantum hardware, the iterative
nature of the optimization process still requires a large
number of calls to the “expensive” quantum resource.

In this paper, we propose a QML algorithm that elimi-
nates the need for costly parameter optimization of quan-
tum circuits. This novel open-loop hybrid algorithm,

which we call quantum kitchen sinks (QKS), is inspired
by a technique known as random kitchen sinks whereby
random nonlinear transformation can greatly simplify
the optimization of machine-learning (ML) tasks [22–24].
The general idea of QKS is to randomly sample from a
family of quantum circuits and use each circuit to realize
a nonlinear transformation of the input data to a mea-
sured bitstring. Subsequently, the concatenated results
are processed with a classical machine learning (ML) al-
gorithm. This approach is simple, flexible, and allows us
to demonstrate that even small quantum circuits, deep in
the NISQ regime, can provide significant “lift” for com-
plex ML tasks such as the classification of hand-written
digits. We further relate our circuits to common tools in
ML known as kernels.

Random Kitchen Sinks— The objective in supervised
ML is to approximate some a priori unknown function
f(u). For example, this function may be a map from
images, represented by the variable u, to labels, such as
“cat” and “dog”. This is often done by optimizing a pa-
rameterized function g(u;θ) to maximize performance on
a training set consisting of M examples {yi,train,ui,train}
such that g(ui,train;θ) ≈ yi,train for as many examples in
the training set as possible. The quality of the approx-
imation is often further quantified by how well g per-
forms on some test set that is different from the training
set [25]. A choice for g that perform particularly well is
a deep neural network, which is a parametrized composi-
tion of many simple nonlinear functions, such as sigmoid
functions or rectified linear units [26]. Finding the pa-
rameters of g that optimize performance (a process that
for deep neural networks is known as deep learning) can
be resource intensive, requiring large training sets and
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FIG. 1. (a) Quantum kitchen sinks approximate a function
f applied to classical data u by using quantum circuits to ap-
ply a nonlinear transformation to u before additional classical
(linear) postprocessing. (b) The classical data is transformed
by first encoding into control parameters of a quantum cir-
cuit, and then measuring the quantum states. The results of
measuring many different circuits parameterized by the same
classical data is then collected into a single, large feature vec-
tor.

and computational power [26].

Rahimi and Recht [22–24] observed that the costly op-
timization of the training process could be replaced by
randomization. In an approach dubbed random kitchen
sinks (RKS) [22–24], they showed it was possible to rep-
resent g as a weighted, linear sum of simple nonlinear
functions that each have random parameters. Each term
in this sum is called a “kitchen sink”. The weights of
the sum still need to be optimized, but this is a linear
problem and, therefore, easy to solve. It has been shown
that, for example, the cosine, sign (i.e., d|x|/dx), and
indicator functions can be used to obtain good function
approximations [22]. The RKS idea originated from an
attempt to approximate the “kernel trick” [27, 28], by
randomly sampling eigenfunctions of an integration ker-
nel. Since then, this technique has been shown to apply
beyond the sampling of a kernel, and to deliver perfor-
mance that is comparable to deep learning, while relying
on much simpler numerical techniques [29, 30].

The performance of the algorithm is dependent on the
number of kitchen sinks D, the choice of nonlinear func-
tion, as well as the number of training examples M .
Rahimi and Recht showed the the approximation error
of g in RKS scales as O( 1√

D
+ 1√

M
) [24] such that it may

be necessary to have large training sets and to generate
many RKS in order to achieve the same error rate as
standard kernel methods [31].

Classical vs. quantum power— Before discussing how
to generalize RKS to a quantum setting, we would like to
make an important observation. In proposing a ML algo-
rithm for quantum computers, there is a danger that the
quantum processor does not contribute in a meaningful
way to the power of the technique. If the external classi-
cal part is powerful enough, the algorithm may work in

FIG. 2. QKS Ansätze for (a) two qubits using a CNOT,
(b) two qubits using a CZ, and (c) four qubits. Circuit (a) and
(b) are interesting to contrast because (a) leads to high per-
formance classification in multiple datasets, while (b) leads to
classifiers that are no better than random (see the text for an
explanation). Larger circuits are described in the appendix.

spite of the transformation made by the quantum proces-
sor. This can be seen as the flip-side of the RKS result we
adapt: generic nonlinearities in the classical processing
can add power to the ML algorithm, even if the quantum
processing does not. For this reason, it is important in
a research context that the classical portion of the algo-
rithm be as simple and linear as possible. For this reason,
we will require all classical pre- and postprocessing to be
strictly linear, and consider only the added power of a
nonlinear transformation enabled by the quantum pro-
cessor. We will refer to this as the Linear Baseline (LB)
Rule.

Applying the LB Rule to our strategy for testing and
validating our algorithm, we design an algorithms such
that the quantum processor can be removed and the in-
put data can be passed directly through the remaining
(linear) classical part of the algorithm. We can then
benchmark the performance lift provided by the quan-
tum processor against the performance of the classical
algorithm on its own. Note that a lift provided by the
quantum processor in this context does not imply an ab-
solute quantum advantage, but it does gives us a simple,
operational method to identify the power added by the
quantum circuit.

Quantum Kitchen Sinks— We now describe our ap-
proach to translate the RKS framework into something
that may be computed by a quantum computer—what
we call QKS (see Fig. 1).

As noted above, one of the nonlinear functions used
to build RKSs is a cosine. We can easily generate cosine
transformations in a quantum setting by applying a Rabi
rotation to a single qubit with a rate and phase that is
chosen at random, but a time duration that is a function
of the input data. While this quantum construction of
RKSs works well, it can easily be simulated on a classical
computer.

In order to generalize this to circuits that are harder
to simulate, our first step is to specify the input data en-
coding in more detail. We choose to encode the data into
angles of rotations in the quantum circuit, while keeping
the state preparation and measurement fixed (a similar
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approach was taken in [11] for a different QML tech-
nique). This naturally leads the measurement statistics
to depend nonlinearly on the classical data.

Under the LB rule, we require that the mapping from
data to angles be linear. To define a linear encoding, let
ui ∈ Rp for i = 1, . . . ,M be a p-dimensional input vector
from a data set containing M examples. We can encode
this input vector into q gate parameters using a (q × p)-
dimensional matrix Ωe of the form Ωe = (ω1, . . . , ωq)

ᵀ

where ωk is a p-dimensional vector with a number r ≤ p
elements being random values and the other elements
being exactly zero. We can also specify a random q-
dimensional bias vector βββe. We then get our set of
random parameters θi,e from the linear transformation
θi,e = Ωeui + βββe. Notice the additional index e which
denotes the eth episode, i.e., the eth repetition of the
circuit parameterized through the encoding Ωe,βββe (see
below for a discussion about episodes).

By specifying different elements of ωk to be nonzero,
we can specify different encodings. For instance, we can
encode a p-dimensional input vector into a single-qubit
circuit by choosing q = 1 and r = p. In this single-qubit
encoding, all dimensions of ui are combined into a single
control parameter. Conversely, we could use a split en-
coding with q = p and r = 1, where each dimension of
ui is fed into a distinct control parameter. We discuss
other possibilities below. Note that the set of encoding
parameters {Ωe,βββe}Ee=1 is only drawn once and becomes
a static part of the machine, which is used for both train-
ing and testing. For the results presented in this paper,
the nonzero elements of Ωe are drawn from a zero-mean
normal distribution with variance σ2, i.e., N (0, σ2) and
the elements of βββe are drawn from a uniform distribution
U(0, 2π) [32]. However, other distributions may also be
considered. These choices only partially determine the
encoding. The exact structure of the circuit and how the
parameters ωk parameterizes the circuit will also have
an impact on the performance of the algorithm, and il-
lustrate the large flexibility available for designing QKSs
tailored to particular datasets and applications.

The choice of distributions and the parameterization of
the circuit together implicitly define a kernel which allows
for QKSs to be analyzed as a standard kernel machine, as
we describe later. The computation of the kernel is not
necessary for the use of the QKS, and in fact may require
exponentially large resources, but it may be helpful in
designing the circuit Ansätze.

Once we have encoded the data into control param-
eters, we are ready to preprocess the data. Since the
input data is encoded in circuit parameters, the choice
of input state is somewhat arbitrary. For simplicity and
without loss of generality, we choose the all-zeros state
|Ψin〉 = |00 . . .〉. Since any other input state would be
generated by another quantum circuit, the composition
of this circuit with the QKS encoding would correspond
to a different circuit Ansatz.

In order to postprocess the QKS output, we must also
extract classical data from the state. This is done by
simply measuring the state in the computational basis—
again, without loss of generality, since a basis transfor-
mation would simply translate into changing the circuit
Ansatz. The output of the measurements gives us classi-
cal bits. We have some design freedom in choosing how to
(classically) process these output bits into features. Un-
der the LB rule, care should be taken in this choice such
that nonlinear postprocessing is avoided. For this work,
we will simply “stack” all of the bits into a q-dimensional
feature vector.

Contrary to the RKS approach, this feature mapping
is stochastic. Our proposal does not preclude averaging
over many shots of the same circuit, but the numerical
studies described here use only individual shots of each
circuit.

Once we have constructed our feature vectors, they are
fed into a classical machine learning algorithm, which
under the LB rule, we take to be linear (as is also the
case in RKS).

It is well-known in machine learning that transform-
ing data into a higher-dimensional feature space can be
useful. There are two strategies to generate higher-
dimensional features using QKS: entangling more and
more qubits, or generating more and more random cir-
cuits. The first strategy leads straightforwardly to a
quantum advantage argument if the parameterized cir-
cuits used are hard to simulate [33–36]. However, large,
monolithic circuits may also require very low error rates.
The second strategy is more readily scaled in NISQ de-
vices, and it simply requires running E fixed circuits,
which we call episodes, to obtain a feature vector that
is (E × q)-dimensional for q qubits. We expect D pa-
rameters in RKS should be roughly equivalent to E × q
parameters in QKS, but we do not have formal results
that guarantee this correspondence.
A synthetic example— As an example to demonstrate

the effectiveness of QKS, we incorporate it into a stan-
dard binary classification problem. As our classical, lin-
ear baseline, we use the logistic regression (LR) classi-
fier provided by the scikit-learn package. As a first
data set, we chose the synthetic “picture frames” data
set shown in Fig. 3. The data set was chosen to have two
classes that are not separable by a linear boundary. The
training set contained M = 1600 two-dimensional points,
800 for each class. The classification accuracy was tested
using a different set of 400 points arranged in a similar
configuration.

We coded the algorithm using the pyQuil® Python
package [37, 38] and executed it on the Rigetti QVM™,
available through the Forest platform [39]. The QVM is
a high-performance quantum simulator written in ANSI
Common Lisp [40]. In order to run the numerical ex-
periments in conjunction with post-processing software
in Python, the QVM was extended with a new entry-
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FIG. 3. (a) Synthetic “picture frames” dataset. (b) Perfor-
mance of the QKS classifier combined with logistic regression.
We show the result of optimizing the performance as a func-
tion of the hyperparameters σ and E. The contours separate
orders of magnitudes in error rate. We see that optimal per-
formance (with a test accuracy of > 99.9%) is achieve with
σ ≈ 1.

point to allow high-speed execution of a large number of
episodes (on the order of 104) for a given circuit Ansatz
and input u. In particular, the QVM was extended
so that a template Quil [38] program defined with the
DEFCIRCUIT facility could be supplied along with a col-
lection of DEFCIRCUIT parameter tuples. The QVM reads
these parameter tuples, fills them into the supplied pro-
gram in constant time, and executes the resulting pro-
gram, all while eliminating unnecessary memory accesses
and allocations. This modification to the QVM was made
possible using Quil’s hybrid classical/quantum memory
model. See the Appendix (e.g., Fig. 8) for examples of
circuit Ansätze written in Quil.

Applying the baseline LR algorithm to the picture
frame dataset yielded a classification accuracy of approx-
imately 50%, meaning it performs no better than ran-
domly assigning classes to each point. We then used the
QKS construction, using the circuit shown in Fig. 2. For
the data presented here, we used split encoding (defined
above) with q = p = 2 and r = 1, and optimized over
the number of episodes E and the parameter σ used in
the random encoding. The best classification accuracy
achieved was > 99.9%, a remarkable performance lift
over the linear baseline, illustrating the power of QKS
(see Fig. 3).

A real-world example— While this synthetic exam-
ple illustrates the computational power provided by the
QKS, it is interesting to consider a less structured classi-
fication problem originating in the real world: discrimi-
nating hand-written digits from the MNIST dataset [41].
This dataset is a well-known benchmark in machine
learning. While it is a multiclass problem, we choose
to focus on classifying two digits that are difficult to dis-
tinguishing using LR: “3” and “5”. The classification
accuracy we obtain with LR is 95.9%, which will serve as
our linear baseline.

The MNIST dataset has a much higher dimensionality
than the previous example. Each digit is a (28×28)-pixel
8-bit grayscale image, so care must be taken to encode

FIG. 4. A four-qubit partitioning of an example MNIST
digit. Each partition, called a tile, corresponds to disjoint
collection of components of the input vector u, i.e., u is some
permutation of the vector (u(1),u(2),u(3),u(4))ᵀ ∈ R784. The
exact permutation is encoded in the choice of nonvanishing
values of the matrix Ω.

the data into a small number of qubits. A standard first
step is to vectorize the image, by stacking the columns
of the image into a p = 784 dimensional vector. We use
a slightly modified approach intended to preserve more
of the spatial structure of the image. After standardiz-
ing the image [42], to run MNIST on a q-qubit proces-
sor, we first split each image into q rectangular tiles, and
construct fixed-depth circuit Ansätze where only single-
qubit gates have parameterized rotations (see Fig. 4).
The encoding vectors ωk are then chosen to have blocks
of r = p/q nonzero elements that select out values of only
one tile per gate parameter.

With this encoding, we have simulated the perfor-
mance of QKS on the (3, 5)-MNIST dataset for different
numbers of qubits. The best error rate is 1.4%, which is
a reduction of the error rate by more than a factor of 2
compared to the linear baseline.

In Fig. 5 we plot the minimum error rate for classifying
the (3, 5)-MNIST dataset using QKS for different num-
bers of qubits [43]. Comparing the results for different
number of qubits, there is a clear minimum in the error
rate in the range 2 to 4 qubits. For more qubits, the er-
ror rate increases again. There are a number of possible
explanations for this behavior. One possibility is simply
that the particular circuits chosen (including the CNOT
networks) may be suboptimal for this task. Another pos-
sibility is that the MNIST data set is insufficiently large
to properly train the larger number of parameters in the
larger circuits, leading to overfitting. These and other
hypotheses will be explored in future work.

It is also important to point out that quantum coher-
ence does not play a role in “single layer” circuits, as the
same output mapping can be implemented using purely
classical stochastic processes (i.e., the circuits are effi-
ciently simulatable, in the weak sense [44]). We are able
to show, however, that by increasing the number of lay-
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FIG. 5. Scaling of the error rate classifying the (3, 5)-MNIST
dataset using QKS combined with logistic regression (LR), as
a function of the numbers of qubits. As a reference, we include
the performance of LR on its own (our linear baseline) and
the performance of a nonlinear classifier built out of a support
vector machine (SVM) with a radial basis function (RBF)
kernel. Details of the circuit Ansätze can be found in Fig. 2
and the appendix.

ers of the circuit Ansätze (each layer using independently
chosen linear encodings) we are able to maintain similar
performance (see Fig. 5). One may also consider other
Ansätze based on circuits that are conjectured to be hard
to simulate [33–36].

The implied kernels— The random sampling of non-
linear feature maps across different episodes can be con-
nected to the use of an implicit kernel function [22–24].
Formally, the kernel is the inner product between in-
put vectors after their nonlinear mapping by the kitchen
sinks. Informally, the kernel function k(u,v) of two input
vectors u and v expresses the similarity between these
inputs. Even though the random and quantum kitchen
sinks do not explicitly use the kernel, it is instructive to
calculate the implicit kernel associated with our circuits,
as it can point to better ways to build circuit Ansätze,
and consider the effect of noise.

We compute the implicit kernel by evaluating the in-
ner product of two binary feature vectors sampled using
a QKS circuit. Let be,u(θθθe) and be,v(θθθe) denote the vec-
torized output of a single episode e with the random pa-
rameters θθθe on the inputs u and v. The inner product of
the total feature vector can then be computed as

k̃(u,v) =
1

E

E∑
e=1

be,u(θθθe) · be,v(θθθe)

where we have added the normalization by E.
The quantities be,v(θe) are random variables with bit-

string values z ∈ {0, 1}q. The probability of a given

outcome z is p
(z)
e,u = |〈z|U(u, θe) |Ψin〉|2 where U(u, θe) is

the unitary transformation realized by the QKS circuit.

We then find

〈be,u · be,v〉 =

q∑
s=0

sP (be,u · be,v = s) = pᵀ
e,u S pe,v

where the matrix S contains the inner product of the
bit strings z and z′, and the vector pe,u the outcome
probabilities, both indexed by z.

We now note that since the parameters θθθe are drawn
from a classical probability distribution P (θθθ), we can
view the sum k̃(u, v) as a Monte Carlo estimator. In
the limit of an infinite number of episodes (E →∞), the
kernel then approaches the form

k(u,v) =

∫
dθθθ P (θθθ) pᵀ

u(θθθ) S pv(θθθ). (1)

Using this result, we can, for instance, calculate the
implicit kernel for the circuit in Fig. 2(a). To do so, we
specify that the values of the matrix Ω are drawn from
a normal distribution N (0, σ2) and that the elements of
the bias vector βββe are drawn from a uniform distribution
U(0, 2π). Using (1), we then find the implicit kernel as

k(u,v) =
1

2
+

1

8
e−

1
2σ

2‖u(1)−v(1)‖22 +
1

16
e−

1
2σ

2‖u−v‖22 , (2)

where u(i) (v(i)) is the ith tile (out of 2) of the input
data vector u (v) [45]. We see that the last term here
is a radial basis function (RBF) kernel that is standard
in machine learning. There are additional components,
including a constant term. The second term depends
only on part of the data. Similar calculations can be
performed for the other circuit Ansätze, and again we
find multiple terms that depend on different subsets of
the data. One can imagine optimizing the CNOT network
to maximize sensitivity to the most relevant subsets of
the data, but we do not explore the possibility here.

Interestingly enough, not all circuit Ansätze lead to a
useful kernel. For instance, circuit Fig. 2(b) seems similar
to the just-analyzed circuit. However, if we calculate
the implied kernel of this circuit, we find the constant
function k(u,v) = 1/2, independent of the input vectors
u and v. This suggests that this circuit should have no
discrimination power and, in fact, our numerical results
confirm this.

We then see that QKS provides a rich structure to
construct implicit kernels, with not only the choice of
circuit, but the choice of encoding, choice of decoding,
and choice of probability distributions shaping the kernel
in understandable ways.
Conclusion— We have described how random quan-

tum circuits can be used to transform classical data in
a highly nonlinear yet flexible manner, similar to the
random kitchen sinks technique from classical machine
learning. These transformations, which we dub quan-
tum kitchen sinks, can be used to enhance classical ma-
chine learning algorithms. We illustrated this enhance-
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ment by showing that the accuracy of a logistic regres-
sion classifier can be boosted from 50% to > 99.9% in
low-dimensional synthetic datasets, and from 95.9% to
98.6% in a high-dimensional dataset consisting of the
hand-written “3” and “5” digits of the MNIST database.
In all these examples, this can be achieved with as few as
four qubits. Future work will focus on exploring different
circuit Ansätze, and developing a better understanding
of the performance of this technique.

Contributions— CMW first conceived of QKS. CMW
and JO developed the theory and prototyped the numer-
ical analysis. JO, NT, and RSS developed the scalable
analysis for larger datasets. GEC proposed the LB rule.
MPS supervised and coordinated the effort. CMW, JO,
NT, RSS, and MPS wrote the manuscript.
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Picture Frames Dataset

The picture frames dataset (Fig. 3) was chosen to have
a nontrivial shape and such that the two classes were not
linearly separable. The smaller (red) square has a side
length of 2 with points uniformly distributed in a region
0.1 around the average. The larger (blue) square has a
side length of 4 with points uniformly distributed in a
region 0.2 around the average.

Parameterized programs for circuits Ansätze

Figs. 6, 7, and 8 define circuit Ansätze for 4, 8, and
16 qubits respectively using the DEFCIRCUIT facility in
Quil [38]. DEFCIRCUIT defines a template which can be
filled in via the %-prefixed parameters.

DEFCIRCUIT P4(%x0,%x1,%x2,%x3):

RX(%x0) 0

RX(%x1) 1

RX(%x2) 2

RX(%x3) 3

CNOT 0 2

CNOT 1 3

CNOT 0 1

CNOT 2 3

FIG. 6. A four-qubit QKS Ansatz written using a Quil
DEFCIRCUIT.

DEFCIRCUIT P9(%x0,%x1,%x2,%x3,%x4,%x5,%x6,%x7,%x8):

RX(%x0) 0

RX(%x1) 1

RX(%x2) 2

RX(%x3) 3

RX(%x4) 4

RX(%x5) 5

RX(%x6) 6

RX(%x7) 7

RX(%x8) 8

CNOT 0 3

CNOT 1 4

CNOT 2 5

CNOT 3 6

CNOT 0 1

CNOT 3 4

CNOT 5 8

CNOT 6 7

CNOT 1 2

CNOT 4 7

CNOT 4 5

CNOT 7 8

FIG. 7. A nine-qubit QKS Ansatz written in Quil.
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DEFCIRCUIT P16(%x0,%x1, ..., %x14,%x15): # params elided

RX(%x0) 0

RX(%x1) 1

RX(%x2) 2

RX(%x3) 3

RX(%x4) 4

RX(%x5) 5

RX(%x6) 6

RX(%x7) 7

RX(%x8) 8

RX(%x9) 9

RX(%x10) 10

RX(%x11) 11

RX(%x12) 12

RX(%x13) 13

RX(%x14) 14

RX(%x15) 15

CNOT 0 4

CNOT 1 5

CNOT 2 6

CNOT 3 7

CNOT 8 12

CNOT 9 13

CNOT 10 14

CNOT 11 15

CNOT 0 1

CNOT 2 3

CNOT 4 5

CNOT 6 7

CNOT 8 9

CNOT 10 11

CNOT 12 13

CNOT 14 15

CNOT 1 2

CNOT 4 8

CNOT 5 9

CNOT 6 10

CNOT 5 6

CNOT 7 11

CNOT 9 10

CNOT 13 14

FIG. 8. A 16-qubit QKS Ansatz written in Quil.
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