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Most natural processes occur far from equilibrium and cannot be
treated within the framework of classical thermodynamics. In 1998,
Oono and Paniconi [Oono, Y. & Paniconi, M. (1998) Prog. Theor.
Phys. Suppl. 130, 29–44] proposed a general phenomenological
framework, steady-state thermodynamics, encompassing non-
equilibrium steady states and transitions between such states. In
2001, Hatano and Sasa [Hatano, T. & Sasa, S. (2001) Phys. Rev. Lett.
86, 3463–3466] derived a testable prediction of this theory. Spe-
cifically, they were able to show that the exponential average of
Y, a quantity similar to a dissipated work, should be equal to zero
for arbitrary transitions between nonequilibrium steady states,
�ln�e�Y� � 0. We have tested this strong prediction by measuring
the dissipation and fluctuations of microspheres optically driven
through water. We have found that �ln�e�Y� � 0 for three
different nonequilibrium systems, supporting Hatano and Sasa’s
proposed extension of thermodynamics to arbitrary steady states
and irreversible transitions.

C lassical thermodynamics and statistical mechanics are orga-
nized around the concept of ‘‘equilibrium states.’’ However,

most processes of interest, such as fast switching between
phonon distributions in optical cavities (1), oscillations of
pumped mesoscopic chemical reaction systems (2, 3), and bio-
logical reactions by molecular machines (4), occur far from
equilibrium. Molecular pumps, for example, maintain ions at
nonequilibrium concentrations by active transport across mem-
branes, and intermediate metabolism in cells involves transitions
between nonequilibrium steady states for which there is no
thermodynamic description.

Part of the difficulty in formulating a general theory of
nonequilibrium thermodynamics is the diversity of dissipation
regimes and mechanisms in systems away from thermal equilib-
rium. With this in mind, the study of ‘‘nonequilibrium steady
states’’ occupies an interesting middle ground between the
familiar territory of equilibrium thermodynamics and a non-
equilibrium ‘‘thermodynamics of everything.’’ In fact, several
theories have been proposed in which the state space includes
such nonequilibrium steady states, which are characterized by
the flow of constant currents (of energy, mass, or charge), as well
as equilibrium states, which are defined by the absence of
currents (5–8).

Any extension of thermodynamics should include a general-
ization of the second law. In one of its several classic formula-
tions, this law places a constraint on transitions between equi-
librium states, expressed by the Clausius inequality (9),

�
A

B dQ
T

� �S, [1]

where the left side pertains to a transition from state A to state
B, and the right side is the entropy difference between these
states. Does a similarly universal law govern transitions between
nonequilibrium steady states?

One can address this question at the level of macroscopic
phenomenology (see ref. 8), or one can seek the answer in a

microscopic, statistical analysis. Taking the latter approach,
Keizer (5, 10) derived a generalized Clausius inequality by
considering the steady-state fluctuations of a set of extensive
variables n � (n1, n2, . . .), which provide a coarse-grained
snapshot of the system. This result describes linear-response
behavior in the near-steady-state regime.

More recently, Hatano and Sasa (11), motivated by the
phenomenological framework of Oono and Paniconi (8), have
obtained predictions for transitions between steady states of a
system expressed in terms of the evolution of its microscopic
degrees of freedom. Their results remain valid even if the
system is driven away from steady-state behavior, suggesting
that a strong Clausius-like inequality for transitions between
nonequilibrium steady states may exist. Specifically, they
predict that a Boltzmann-weighted average of the transition
dissipation is equal to zero, such that �ln�e�Y� � 0. Here, we
report experiments in which optically dragged microspheres
are used to test the predictions of Hatano and Sasa (11), which
we now introduce.

Theory and Background
Let x denote the microstate of some system of interest, let �
denote an externally controlled parameter, and let us suppose
that, when this parameter is held fixed, the system relaxes to a
stationary state described by a probability distribution �ss(x;�).
Here, we use the term ‘‘stationary state’’ quite generally, refer-
ring to either an equilibrium state or a nonequilibrium steady
state. In the former case, �ss is the familiar Boltzmann–Gibbs
distribution; in the latter case, �ss describes the microscopic
fluctuations of the system in the steady state. When we carry the
system from one stationary state to another, its microscopic
evolution is specified by a trajectory x(t).

Imagine an idealized process by which we drive the system
from one stationary state to another by holding the parameter
fixed at �1 and then varying it over a finite time � to a new
constant value �2. If we change the parameter slowly and gently,
the system moves through a continuous sequence of stationary
states and the dissipated work is at a minimum. If we instead vary
the parameter rapidly and violently, then the system cannot relax
to the state consistent with the current parameter value because
that value is changing too quickly. For transitions between
equilibrium states, the Clausius inequality provides a quantita-
tive measure of this lag: the more irreversible the process, the
greater the difference between the two sides of Eq. 1. For
transitions between nonequilibrium steady states, Hatano and
Sasa (11) identified a new property, the Y value, which measures
this lag. They construct the following quantity:

Y � �
0

�

dt �̇�t�
��

��
�x�t�, ��t��, [2]
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where �(x, �) � �ln �ss(x; �) and �̇ � d��dt. The value of Y
depends on both what we do to the system, as specified by the
imposed time-dependence of the parameter �(t), and on how the
system responds, which is represented by the phase-space tra-
jectory x(t). Because our system is subject to thermal noise, each
repetition of the process yields a different Y value. Now, consider
a statistical ensemble of trajectories, obtained by repeatedly
varying the control parameter according to the same schedule
�(t). Under very general conditions, Hatano and Sasa have
shown that:

�e�Y� � 1, [3]

where the angular brackets denote an average over our ensemble
of repetitions of the process. By Jensen’s inequality (12), Eq. 3
implies that:

�Y� � 0. [4]

Although the analysis of Hatano and Sasa (11) was carried out
in the specific context of a trapped Brownian particle subject to
a nonconservative force, it is evident from their derivation of
Eqs. 3 and 4 that they are more general and do not depend on
particular assumptions about the dynamics of the system.

Connecting their results to earlier work by Oono and Paniconi
(8), Hatano and Sasa (11) interpret Eq. 4 as a generalized second
law of thermodynamics that is applicable to transitions between
(equilibrium or nonequilibrium) stationary states. As explained
in greater detail in ref. 11, several observations support this
interpretation. First, Y � 0 when the process is carried out
reversibly, suggesting that in the more general case the non-
negative value �Y� provides a measure of the irreversibility of the
process. Second, for the system studied in ref. 11, Eq. 4 is
equivalent to a generalized Clausius inequality proposed within
Oono and Paniconi’s phenomenological steady-state thermody-
namic framework (8). Finally, Eqs. 3 and 4 reduce to known
results for transitions between equilibrium states in the appro-
priate limit (see Results and Discussion).

To test Hatano and Sasa’s predictions, we dragged a micro-
scopic bead through water by using a steerable harmonic optical
trap. Our protocol created nonequilibrium steady states that are
both experimentally tractable and theoretically understood. On
the experimental side, laser tweezers and similar optical devices
have proven to be ideal laboratory tools for probing nonequili-
brum statistical physics at microscopic length scales (13–17). In
the present work, this technology provided the means to pull the
bead and also to observe its motion at the level of thermal
fluctuations. On the theoretical side, treating the bead as a
Brownian particle and the optical trap as a harmonic potential,
we easily obtain an expression for the steady-state distribution,
�ss, which enters into the definition of Y in Eq. 2. We subse-
quently confirmed the validity of the theoretical predictions for
�ss of Mazonka and Jarzynski (18) by comparing them with the
experimentally measured distributions, and we found excellent
agreement (data not shown). We chose a system in which �ss is
known a priori. In fact, Hatano and Sasa’s relation for transitions
between steady states can be applied to any physical system in
which the stationary distribution �ss is known or can be extracted
from experiments. The first step in applying Hatano and Sasa’s
relation to more complicated systems (for example, in turbulence
or granular media) in which the steady-state distributions �ss are
not known, will be to obtain them experimentally.

Methods
For each experiment, micron-sized polystyrene beads (diameter,
10.06 	m; Bangs Laboratories, Carmel, IN) were dispensed and
diluted inside a microfluidics chamber, which was then sealed. A
single bead was then trapped in a harmonic potential created by

superposing the foci of two counterpropagating 834-nm laser
beams (19), and an ultra-fast steerable mirror (Nano MTA-2,
Mad City Labs, Madison, WI) was used to translate the trap. The
optical force f(t) exerted by the trap is equal in magnitude and
opposite in direction to the rate of change of the momentum of
light (19), which we measured directly by using position-sensitive
photodetectors (DL-10, United Detector Technology Sensors).
The position of the trap was calculated from the angular rotation
of the steerable mirror. Data were sampled at 10 kHz, with the
average over 10 data points saved to a disk. The following further
parameters characterized the experiments: the trap constant

[pN�	m]; the number of switching repetitions N; the trap
velocities v1 and v2 (	m�s), corresponding to the initial and final
steady states, respectively; the switching time � (s); and the value
of q � 
���[pN (	m�s)]. Values for the first experiment were as
follows: 
 � 4.25, n � 3,924, v1 � 8.12, v2 � 12.15, � � 0.06, and
q � 0.20. Values for the second experiment were as follows: 
 �
4.51, n � 3,163, v1 � 9.93, v2 � 13.56, � � 0.06, and q � 0.21.
Values for the third experiment were as follows: 
 � 4.9, n �
3,603, v1 � 7.53, v2 � 10.20, � � 0.08, and q � 0.23.

Results and Discussion
Nonequilibrium steady states were created by translating the
optical trap at constant speed (Fig. 1). After a relaxation time tR
	 ��
, where � is the friction coefficient of the bead in solution
and 
 is the spring constant of the trap, the bead settled into a
steady state in which its position fluctuated around an average
displacement �v�
 behind the minimum of the trap potential, so
that the average force exerted by the trap balanced the average
frictional force felt by the bead. This nonequilibrium steady state
was maintained by a continual transfer of energy: the trap
performed work on the bead at an average rate P� � �v2, which
was dissipated as heat into the surrounding buffer.

We began our experimental trajectories in such a steady state,
with the trap moving at a speed v1, and we then changed the speed
from v1 to v2 over a time interval of duration �, after which we
continued to move the trap at speed v2 (Fig. 2a). Thus, the trap
speed v played the role of the parameter � in our earlier discussion.
Modeling the bead as an overdamped Brownian particle (18), the
steady-state distribution is �ss(x; v) 
 exp[��(
x � �v)2�2
], where
x is the bead displacement relative to the minimum of the trap and
� is the inverse temperature of the solution. Eq. 2 then gives us
Y � (���
)�0

� dt v̇(t) [
x(t) � �v(t)], where x(t) specifies the motion
of the bead during a given realization of the process, and v(t) is the
(externally imposed) trap speed.

Fig. 1. Schematic representation of the experiment. Optically trapped bead
lags a distance x behind the center of the trap translating at velocity v.
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We used three distinct nonlinear transitions, and for each type,
we repeated the experiment N times. Our three experiments
differed by the switching protocol and the initial and final steady
states (Fig. 2a). In the first experiment, a quarter-sine wave
protocol was used to vary the trap speed: v(t) � v1 � (v2 �
v1)sin(
t�2�). For the second and third experiments, we used an
inverted three-quarters sine wave: v(t) � v1 � (v2 � v1)sin(3
t�
2�). During each repetition, we recorded both the trap position
and the time-dependent optical force on the sphere, and we used
these signals to compute the Y value for each of N transitions.
From these signals, the value Yn was evaluated for each realiza-
tion. To compare with predictions, let �Y� and Ye � �ln �e�Y�
denote the ordinary and exponential averages of the observed Y
values. In Fig. 2 b–d, we show for each experiment the distri-
bution of the N observed values Yn (blue histogram), as well as
the averages Ye and �Y� computed from these values (green and
black bars, respectively).

Two features are immediately apparent in Fig. 2 and Table 1.

The first feature is the good agreement with the theoretical
predictions (Eqs. 3 and 4). As shown in Fig. 2 b–d, the expo-
nential averages of all three experiments are equal to zero, within
estimated statistical error, confirming the strongest prediction of
Hatano and Sasa (11). Second, in each of the three experiments,
the error bars reveal greater statistical uncertainty in Ye than in
�Y�, although these quantities were computed from the same
data. This discrepancy is typical of averages of highly nonlinear
functions: if the distribution of Y values is significantly wider than
unity, then Y values that are several standard deviations below
the mean contribute disproportionately to the average of e�Y,
resulting in poor convergence (20–24).

Having shown that, for our system, the Y values satisfy Eqs. 3
and 4, we will now clarify their physical meaning and their
correspondence to predictions for isothermal transitions be-
tween equilibrium states. When the stationary states corre-
sponding to fixed values of � are equilibrium states (at a common
temperature ��1), represented by Boltzmann–Gibbs distribu-
tions �ss 
 e��H(x,�), then a direct evaluation of Eq. 2 gives Y �
�(W � �F), where W is the work performed on the system during
the process and �F is the free energy difference between the
initial and final equilibrium states. In this limit, Hatano and
Sasa’s results reduce to the nonequilibrium work relation (25–
27) and the Clausius inequality (Eq. 1):

�e��W� � e���F, �W� � �F. [5]

We can develop corresponding predictions for transitions
between nonequilibrium steady states by recasting Hatano and
Sasa’s result in terms of more familiar quantities. After incor-
porating the expression for the Gaussian steady-state distribu-
tion �ss into Eq. 2 and performing some simple algebra, we
obtain the following:

Y �
1
q ��P�

2
� �

0

�

dt v̇ f�, [6]

where �P� � ��v2
2 � v1

2� is the difference between the initial and
final steady-state average dissipation rates, and q � 
��� is a
constant with the dimensions of power, constructed from pa-
rameters characterizing the bead, trap, and surrounding water.
During a transition, the instantaneous power that the moving
trap delivers to the bead is the fluctuating quantity P(t) � v(t)f(t).
The net change in the power delivered to the bead is �P �
�vP � �f P, where �vP � �dtv̇f is the contribution to �P from
increments of the trap speed, and �f P � �dtv̇f is the contribution
from fluctuations in the force f acting on the bead. By using Eq.
6 to rewrite Eqs. 3 and 4 as follows:

�e�vP/q� � e�P� /2q, ��vP� � �P� �2, [7]

we see a strong resemblance to the nonequilibrium work relation
and the Clausius inequality (Eqs. 5). First, P� �2 � �v2�2 can be
viewed as a ‘‘state function,’’ roughly analogous to the free
energy F for equilibrium states. Next, the constant q � 
���

Fig. 2. Trap-velocity profiles (a) and steady-state transitions producing low
(b), medium (c) and high (d) dissipation. Each Y value distribution, shown in
blue, is plotted with its ordinary average �Y� (black bar) as well as the Hatano
and Sasa exponentiated average, �ln �e�Y� � Ye (green bar). The bar heights
are arbitrary, but their finite widths represent statistical errors, estimated with
the bootstrap method, such that each green and black bar extends one
standard deviation on either side of the computed value of Ye and �Y�,
respectively.

Table 1. Ordinary and exponential averages of the observed Y values for the
three experiments


trap [pN�	m] �, ms
q � 
���,
pN 	m�s N �Y� 
 SE* �ln �e�Y� 
 SE*

4.25 60 0.20 3,924 2.184 
 0.032 �0.173 
 0.162
4.90 80 0.23 3,603 3.444 
 0.042 �0.094 
 0.267
4.51 60 0.21 3,163 7.377 
 0.062 �0.318 
 0.838

*The statistical errors of both averages were estimated with the bootstrap method (29) because a distribution of
Boltzmann-weighted averages is not Gaussian.
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specifies a unit of power relevant to our dragged particle, just as
��1 specifies the relevant unit of energy in the equilibrium case.
Last, in Eqs. 5, the work W is the contribution to the net change
in the internal energy of the system, E, arising from increments
in the value of � (25–27). Thus, by drawing parallels between P�
and the free energy (P� �2 	 F), q and temperature (q 	 ��1), and
�vP and mechanical work (��vP 	 W), the analogy between
equilibrium laws of Eqs. 5 and the nonequilibrium laws of Eqs.
7 is complete.

Our experiments support the suggestion that transitions be-
tween nonequilibrium steady states are subject to laws similar to
those governing transitions between equilibrium states (Eqs. 5).
These findings motivate several questions. First, does a steady-
state thermodynamic formalism support a zeroth law? Such a law
would define an effective temperature of nonequilibrium steady
states (28). Second, can Eq. 4 also be understood in terms of the
monotonic growth of some global quantity, just as the equilib-
rium second law states that the combined entropy of a system
and its thermal surroundings never decreases? Last, at the
microscopic level, can nonequilibrium steady states be described

by a universal theory for �ss, analogous to the Boltzmann–Gibbs
distribution for equilibrium states? If so, this result would greatly
increase the predictive power of Eq. 4 as a ‘‘generalized second
law’’ because the microscopic nature of the steady state enters
into the definition of the quantity Y by means of the function � �
�ln �ss. For now, we can apply Eqs. 3 and 4 only to systems for
which �ss can be deduced from a simple model or from direct
experimental measurement of the distribution. Theoretical de-
velopments along these lines should be readily testable with the
use of microscopic systems such as those described here, whose
fluctuations are directly measurable.
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