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A system responding to a stochastic driving signal can be interpreted as computing, by means of

its dynamics, an implicit model of the environmental variables. The system’s state retains information

about past environmental fluctuations, and a fraction of this information is predictive of future ones. The

remaining nonpredictive information reflects model complexity that does not improve predictive power,

and thus represents the ineffectiveness of the model. We expose the fundamental equivalence between this

model inefficiency and thermodynamic inefficiency, measured by dissipation. Our results hold arbitrarily

far from thermodynamic equilibrium and are applicable to a wide range of systems, including biomo-

lecular machines. They highlight a profound connection between the effective use of information and

efficient thermodynamic operation: any system constructed to keep memory about its environment and to

operate with maximal energetic efficiency has to be predictive.

DOI: 10.1103/PhysRevLett.109.120604 PACS numbers: 05.70.Ln, 89.70.�a

All systems perform computations by means of respond-
ing to their environment. In particular, living systems
compute, on a variety of length and time scales, future
expectations based on their prior experience. Most biologi-
cal computation is fundamentally a nonequilibrium pro-
cess, because a preponderance of biological machinery in
its natural operation is driven far from thermodynamic
equilibrium. For example, many molecular machines
(such as the microtubule-associated motor kinesin) are
driven by adenosine triphosphate (ATP) hydrolysis, which
liberates�500 meV per molecule [1]. This energy is large
compared with ambient thermal energy, 1 kBT � 25 meV
(kB is Boltzmann’s constant and the temperature is
T � 300 K). In general, such large energetic inputs drive
the operative degrees of freedom of biological machines
away from equilibrium averages.

Recently, significant progress has been made in describ-
ing driven systems far from equilibrium [2], perhaps
most notably Jarzynski’s work relation [3] generalizing
Clausius’ inequality, the further generalization embodied
in fluctuation theorems [4,5], and the extension of these
relations to calculating potentials of mean force [6]. These
advances have allowed researchers to measure equilibrium
quantities, such as free energy changes, by observing how a
system reacts to being driven out of equilibrium, e.g. [7,8].

This literature typically assumes that the experiment is
known, i.e. that the exact time course of the driving signal
is given. However, systems that are embedded in realistic
environments, for example a biological macromolecule op-
erating under natural conditions, are exposed to stochastic
driving. Here, we therefore study driven systems for which
the changes in the driving signal(s) are governed by some
probability density PX. This can be any stochastic process,
and the results we derive require neither that PX has specific

properties, nor that it is known by the system.We assume that
there is no feedback from the system to the driving signal.
The dissipation, averaged not only over the system’s path
through its state space, but also over driving protocols, then
quantifies the system’s energetic inefficiency.
The dynamics of the system perform a computation by

changing the system’s state, as a function of the driving
signal. As a result, the new system state contains some
memory about the driving signal. The system dynamics can
be interpreted as computing a model: past environmental
influences are mapped onto the current state of the system,
which through its correlation with forthcoming environmen-
tal fluctuations implicitly contains a prediction of the future.
In this Letter, we ask how the quality of this (implicit)

model is related to thermodynamic efficiency. But how do
we measure the quality of a model? A useful model has to
have predictive power (see e.g. [9–12] and references
therein), meaning it must capture predictive information
[13–16], while not being overly complicated. In other
words, the model should contain as little dispensable non-
predictive information as possible.
Our central contribution is the demonstration of a

fundamental equivalence between the instantaneous non-
predictive information carried by the system and the
dissipation of energy.
Problem setup.—Let st denote the state of the system at

time t, while xt denotes the driving signal. The dynamics of
the system are modeled by discrete time Markovian condi-
tional state-to-state transition probabilities, pðstjst�1; xtÞ.
The external drive is governed by PX ¼ pðx0; . . . ; x�Þ.
We assume that at time t ¼ 0, the system is in thermody-
namic equilibrium, in contact with a heat bath with inverse
temperature � :¼ 1=kBT. A change in the external driving
signal x0 ! x1 forces the system out of equilibrium.
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The system responds by changing its state s0 ! s1, accord-
ing to the transition probability pðs1js0; x1Þ. The external
signal subsequently changes again x1 ! x2, and the pro-
cess is repeated until time t ¼ �:

The system remains in thermal contact with the heat bath
during the entire protocol x0; . . . ; x�, as in [17]. Work is
done during a work step, as the external signal changes
from xt�1 to xt [17,18],

W½st�1; xt�1 ! xt� :¼ Eðst�1; xtÞ � Eðst�1; xt�1Þ: (1)

In response to this change, the system relaxes from st�1 to
st in a relaxation step. The total work over the course
of a driving protocol is W ¼ P

�
t¼1 W½st�1; xt�1 ! xt�.

The total change in energy, �E :¼ Eðs�; x�Þ � Eðs0; x0Þ ¼
W þQ, equals the total work plus the total heat,
Q ¼ P

�
t¼1½Eðst; xtÞ � Eðst�1; xtÞ�, flowing into the system

during the relaxation steps.
For now, we assume that the kernel which describes the

dynamics, pðstjst�1; xtÞ, is fixed. However, the conditional
distribution over states after the work step but before the
system relaxes, pðst�1jxtÞ, changes as a function of time,
as does the conditional distribution over states after the
relaxation step, pðstjxtÞ. In general, these distributions are
not the same, and neither of them is an equilibrium distri-
bution. Under Markovian system dynamics, the probability
before a relaxation step simplifies to

pðst�1jxtÞ ¼ hhh� � � hpðst�1jst�2; xt�1Þipðst�2jst�3;xt�2Þ � � �ipðs1js0;x0Þipeqðs0jx0Þipðx0;...;xt�1jxtÞ; (2)

and the distribution after a relaxation step is given by

pðstjxtÞ ¼ hpðstjst�1; xtÞipðst�1jxtÞ: (3)

Angled brackets with a subscripted probability p denote an
average over p.

The equilibrium distribution is the same function, before

and after relaxation, peqðsjxtÞ :¼ e��ðEðs;xtÞ�FtÞ, where s

refers to the state of the system with energy Eðs; xtÞ, and
Ft :¼ F½xt� denotes equilibrium free energy. The proba-
bility of a specific path through the system’s state space,
given the protocol, is

PSjX ¼ peqðs0jx0Þ
Y�

t¼1

pðstjst�1; xtÞ; (4)

and the joint probability, PS;X :¼ pðs0; . . . ; s�; x0; . . . ; x�Þ,
is

PS;X ¼ pðx0Þpeqðs0jx0Þ
Y�

t¼1

pðxtjx0; . . . ; xt�1Þpðstjst�1; xtÞ:

(5)

In the following, unless otherwise clear from the context,
angled brackets without a subscript denote an average over
the distribution PS;X.

Dissipation out of equilibrium.—After the conclusion of
the protocol, the probability over system states is given by
pðs�jx�Þ, in general not an equilibrium distribution. Then,
in addition to the equilibrium free energy, F�, there is
another contribution to the free energy, because the system
is not in thermodynamic equilibrium. This additional free
energy would be dissipated as heat to the environment
if the system were to relax to thermodynamic equilib-
rium. For Markovian system dynamics, the additional
nonequilibrium contribution is proportional [13] to the
relative entropy (Kullback-Leibler divergence) between

the actual distribution pðs�jx�Þ at the end of the protocol
and the equilibrium distribution,

Fadd
� ½pðs�jx�Þ� ¼ kBTDKL½pðs�jx�Þ k peqðs�jx�Þ�: (6)

The non-negative Kullback-Leibler (KL) divergence [19]
between distributions pðxÞ and qðxÞ is defined as

DKL½pðxÞ k qðxÞ� :¼
�
ln

�
pðxÞ
qðxÞ

��

pðxÞ
� 0: (7)

The sum of both contributions to the free energy
constitutes the overall nonequilibrium free energy,
Fneq½pðs�jx�Þ� ¼ F� þ Fadd

� ½pðs�jx�Þ�. Here, nonequilib-

rium free energy is defined in analogy to the standard
equilibrium free energy as a functional of the probability
distribution, but applied to any probability distribution
[20–22], that is to any pðsjxÞ,
Fneq½pðsjxÞ� :¼hEðs;xÞipðsjxÞþkBThln½pðsjxÞ�ipðsjxÞ: (8)

The average work irretrievably lost over the course of a
driving protocol,

hWdissiPSjX :¼ hWiPSjX � �Fneq; (9)

equals the average work performed on the system
minus the nonequilibrium free energy change �Fneq :¼
Fneq½pðs�jx�Þ� � Fneq½pðs0jx0Þ�. We can compare this to

the average excess work for a given protocol, hWexiPSjX :¼
hWiPSjX ��F, the total work done on the system in excess

of the equilibrium free energy change �F :¼ F� � F0

which would be the work done if the driving signal
changed quasistatically (infinitely slowly), and hence
the system remained in thermodynamic equilibrium
throughout the protocol. This excess work equals the
dissipated work only when the protocol includes a final
equilibration of the system.
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Since the system starts in equilibrium, the total change
in nonequilibrium free energy is the equilibrium free
energy change plus the above-mentioned additional con-
tribution to the free energy,�Fneq ¼ �Fþ Fadd

� ½pðs�jx�Þ�.
The dissipation is then the excess work minus this addi-
tional nonequilibrium contribution,

hWdissiPSjX ¼hWexiPSjX �Fadd
� ½pðs�jx�Þ��hWexiPSjX : (10)

Later, we derive a lower bound on the dissipation and
excess work averaged over all protocols, denoted by
hWdissi and hWexi, respectively.

Each of the incremental work steps, xt ! xtþ1, is ac-
companied by a nonequilibrium free energy change given
by �Fneq½xt ! xtþ1� :¼ Fneq½pðstjxtþ1Þ� � Fneq½pðstjxtÞ�,
so that the average dissipation during each work step is

hWdiss½xt ! xtþ1�i :¼ hW½st; xt ! xtþ1�ipðst;xt;xtþ1Þ
� h�Fneq½xt ! xtþ1�ipðxt;xtþ1Þ: (11)

The nonequilibrium free energy change during each
relaxation step is

�Fneq½xt; st�1 ! st� ¼ Fadd
t ½pðstjxtÞ� � Fadd

t ½pðst�1jxtÞ�;
(12)

which equals the change in KL divergence from the equi-
librium distribution.

Predictive power, memory, and dissipation.—The
system state and the external signal are random
variables that share information I½st;xt� :¼hln½pðst;xtÞ=
pðstÞpðxtÞ�ipðst;xtÞ, where pðstÞ ¼ hpðstjxtÞipðxtÞ. Mutual in-

formation [23] measures the reduction in uncertainty about
the outcome of a random variable upon learning the
identity of another variable, and it is symmetric:
I½st;xt�¼H½st��H½stjxt�¼H½xt��H½xtjst�. Uncertainty
is quantified by the entropy, H½st� :¼�hlnpðstÞipðstÞ, and
the conditional entropy, H½stjxt� :¼�hlnpðstjxtÞipðst;xtÞ, re-
spectively. The system transition probability, pðstjst�1;xtÞ,
is assumed to depend on the current signal value xt and
system state st�1. These two dependencies are sufficient to
induce correlations between the system’s current state and
previous signal values. The memory the system keeps
about the external signal can then be quantified by the
information that the system state st retains about a trajec-
tory fxt��m ; . . . ; xtg. In general, there are temporal correla-

tions in the input signal, and hence, there can be
correlations between st and future signal values. That is,
some of the memory retained in the system’s state is
information about the future trajectory fxtþ1; . . . ; xtþ�f g.
Here we focus on the instantaneous memory, ImemðtÞ :¼
I½st; xt�, and the instantaneous predictive power [11],
IpredðtÞ :¼ I½st; xtþ1� ¼ H½xtþ1� �H½xtþ1jst�.

The implicit model computed by the system’s dynamics,
pðstjst�1; xtÞ, which map the signal xt onto state st, given
the current state st�1, contains the probabilistic map

pðxtþ1jstÞ, which represents the prediction of xtþ1, given
the value of st.
The instantaneous nonpredictive information is defined as

the difference between instantaneous memory and predic-
tive power, ImemðtÞ � IpredðtÞ. It represents useless nostalgia
and provides a measure for the ineffectiveness of the model.
Averaging the nonequilibrium free energy over proto-

cols allows us to write

�hFneq½pðsjxÞ�ipðxÞ ¼ �hEðs; xÞipðs;xÞ �H½sjx�: (13)

Combining this with Eqs. (1) and (11) [24], we arrive at our
first result: the instantaneous nonpredictive information is
proportional to the average work dissipated while the
signal changes from xt to xtþ1,

�hWdiss ½xt ! xtþ1�i ¼ ImemðtÞ � IpredðtÞ: (14)

In summary, the unwarranted retention of past information
is fundamentally equivalent to energetic inefficiency.
Lower bound on total dissipation.—We now relate the

total average dissipated work during the entire protocol,
averaged over all protocols, hWdissi, to the total nostalgia,
Imem � Ipred, given by the difference between the total

instantaneous memory, Imem :¼ P
��1
t¼0 ImemðtÞ, and the total

instantaneous predictive power, Ipred :¼ P
��1
t¼0 IpredðtÞ. To

that end, we need to sum Eq. (11) over all time steps. This
sum includes an average over the sum of changes in
nonequilibrium free energy, which can be expressed as

�X��1

t¼0

�Fneq½xt ! xtþ1�
�
¼ h�Fneq � �Frelax

neq i; (15)

in terms of the average total nonequilibrium free energy
change, h�Fneqi, and the average sum of nonequilibrium

free energy changes during relaxation steps,

h�Frelax
neq i :¼

�X��1

t¼0

�Fneq½xt; st ! stþ1�
�
� 0: (16)

This quantity is nonpositive because, on average, during
relaxation steps the system evolves toward equilibrium.
The total dissipation then becomes, using Eq. (14),

�hWdissi ¼ Imem � Ipred � �h�Frelax
neq i: (17)

The total nostalgia therefore provides a lower bound on the
total average dissipation and also, due to Eq. (10), on the
total average excess work,

Imem � Ipred � �hWdissi � �hWexi: (18)

We can use this result to refine Landauer’s principle [25],
which states that any erasure of information must be bal-
anced by an increase in entropy elsewhere. The information
erased during a protocol, such as the reset protocol of
Landauer [25], is the entropy change Ie :¼ H½s0jx0� �
H½s�jx��. Note that the information erased here is not
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mutual information about the driving signal, but rather
information that could have potentially been extracted
from the system by some measurement process. Landauer
pointed out that the erasure of information requires heat
to flow out of the system, which obeys [using the first
and second laws of thermodynamics, and Eqs. (8) and (9)]

� �hQi ¼ Ie þ �hWdissi � Ie: (19)

Substituting our result from Eq. (17) into Eq. (19) yields the
new relation

� �hQi ¼ Ie þ Imem � Ipred � �h�Frelax
neq i: (20)

Thus [using Eq. (16)] we obtain a refinement of Landauer’s
principle,

� �hQi � Ie þ Imem � Ipred; (21)

where the bound is augmented by the total nostalgia. The
system dynamics of a computing device that retains mem-
ory therefore must be maximally predictive to approach
Landauer’s limit.

Discussion.—The dynamics, pðstjst�1; xtÞ, have been
assumed fixed for any given system. However, biological
systems are typically adapted to their environment. One
can then ask if there is a simple principle underlying the
process producing this adaptation. If such a principle
exists, then it may reflect the importance of energetic
efficiency, because of the resulting competitive advantage
for reproducing organisms. While other criteria, such as
robustness and sensitivity, play a role, energetic efficiency
is of fundamental relevance. This is exemplified by bio-
logical molecules that harness environmental fluctuations
to accomplish energetically-costly downstream tasks. The
more efficiently such a molecule can operate, the more it
can accomplish through coupling to endergonic chemical
reactions or mechanical actions. For example, with more
efficient coupling to the environment, the molecular motor
kinesin can carry larger cargos. Likewise, with greater
efficiency cytochrome c oxidase complex, an enzyme
that pumps protons across a membrane, can create stronger
electrochemical gradients. Evidence for the importance of
energetic efficiency is furthermore found in biomolecular
machines that approach 100% efficiency when driven in a
natural fashion: the stall torque for the F1-ATPase [26] and
the stall force for myosin V [27] are near the maximal
values possible given the free energy liberated by ATP
hydrolysis and the sizes of their respective rotations
and steps.

These and many other biological functions require some
correspondence between the environment and the systems
that implement them. Therefore the memory of their in-
stantiating systems must be nonzero. We have shown that
any such system with nonzero memory must conduct
predictive inference, at least implicitly, to approach maxi-
mal energetic efficiency.

A substantial amount of research has sought to relate
emerging biological functions and behaviors to efficient
energy usage. Examples range from animal behavior (e.g.
[28]) to single neurons, where recently researchers have
proposed that the minimization of energy expenditure,
subject to constraints given by the desired function, may
be ‘‘a unifying principle governing neuronal biophysics’’
[29]. On the other hand, there is much research on optimal
information processing in neurons. For a recent review, see
e.g. [30], which proposes that the extraction of predictive
information in biological signal processing may constitute,
or at least lead to, a general principle. By directly relating
memory and predictive power to dissipation out of equi-
librium, the results we have derived here indicate that these
two important paradigms are deeply connected.
While it is perhaps intuitive that neurons and organisms

should have to implement predictive inference to function
well, our results have the striking implication that on all
scales energetic efficiency calls for predictive inference.
This includes the smallest biological units, such as mo-
lecular machines.
Our results also specify the required kind of predictive

inference: maximization of predictive power at a desired
level of system memory, as in [11]. This connects with
work on optimal predictive inference algorithms discussed
in [12,14,31], and references therein. We envision imple-
menting these algorithms in fast and efficient hardware.
The results we have derived here could then be used to
choose the energetically most efficient implementation
among the many possible choices.
Conclusion.—We argued that dissipation far from ther-

modynamic equilibrium is given by average work minus
nonequilibrium free energy change. We also argued that
the nonpredictive part of a system’s memory provides a
natural measure for the inefficiency of a system’s implicit
model of its environment.
We showed that instantaneous nonpredictive informa-

tion is proportional to the energy dissipated when an
external driving signal changes by an incremental amount,
thereby doing work on the system. This result demon-
strates the intimate connection between prediction and
energetic efficiency. Summed over the entire protocol,
the total nonpredictive information provides a lower bound
on the total dissipation.
These results imply that any system which is built to

have nonzero memory has to be predictive in order to allow
for minimal possible dissipation, i.e. to operate at maximal
energetic efficiency. Our results furthermore allow for a
refinement of Landauer’s principle, applied to systems
away from thermodynamic equilibrium.
We have provided a connection between nonequilibrium

thermodynamics and learning theory, by making precise
how two important aspects of life are fundamentally related:
making a predictive model of the environment and using
available energy efficiently.
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