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A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful
work, while operating away from thermal equilibrium without excessive dissipation. To this end, we
derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within
the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and
bestows optimal protocols with many useful properties. We discuss the connection to the existing
thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal
control parameter protocols in a simple nonequilibrium model.
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Introduction.—Molecular machines are microscopic ob-
jects that manipulate energy, matter, and information on
the nanometer scale. Naturally occurring machines are
central to the performance of virtually any prominent
cellular process, and the design of synthetic machines
holds out the promise for significant technological advan-
ces. A major impediment to quantitative understanding of
their thermodynamics is that molecular-scale machines
typically operate out of thermodynamic equilibrium. For
instance, the rotary F,F;-ATPase motor is powered by
proton flow across a gradient producing a free energy
difference of ~200 meV per proton. This free energy
difference dwarfs the characteristic energy scale of thermal
fluctuations under ambient conditions, 1kgzT =~ 25 meV
(where kj is Boltzmann’s constant and the temperature is
T ~ 300 K); hence, the proton flux drives the machine out
of equilibrium. In such contexts, equilibrium statistical
mechanics has limited applicability and a nonequilibrium
understanding of these machines is vital. Indeed, living
processes with their preparation and preservation of order
must, by their very nature, be out of equilibrium, leading
Schrédinger to equate death with ““the decay into thermo-
dynamical equilibrium” [1].

A central figure of merit for both molecular and macro-
scopic machines is thermodynamic efficiency: their ability
to exploit available energy from a source to perform useful
work, while minimizing dissipation of heat into the sur-
rounding environment. The importance of efficiency en-
genders an interest in understanding the basic physical
principles at play, the limits on efficiency in energy con-
version, and the characteristics of optimal machines. In
order to generate insights into biomolecular machine effi-
ciency, insights that are transferable to the design of novel
synthetic molecular machines, a general framework is
necessary, one that abstracts away from many of the mo-
lecular details and instead focuses (at least initially) on
criteria for optimal nonequilibrium processes.

For macroscopic systems, the properties of optimal pro-
cesses have been investigated using thermodynamic
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length, a natural measure of the distance between equilib-
rium thermodynamic states [2]. Its original derivations,
developed in the context of finite-time thermodynamics,
considered the metrics on equilibrium manifolds, specifi-
cally the second derivatives of internal energy [2], entropy
[3], or free energy [4], all essentially equivalent in the
thermodynamic limit [5]. Central results were derived
under the assumption of endoreversibility [6], whereby
the system and environment are in thermal equilibrium,
though not necessarily equilibrated with each other. In a
system driven by changes in a single control parameter,
this amounts to the system trailing the environment at any
instant, residing in an equilibrium corresponding to the
system at a previous value of the control parameter. From
these foundations, the second derivatives of internal
energy, free energy, and entropy were shown to each
impose a Riemannian metric structure on the equilibrium
surface [6,7].

Our aim is to adapt this framework to microscopic,
nanoscale processes rather than the macroscopic processes
for which it was originally formulated. Recent extensions
have developed a microscopic formulation of thermody-
namic length [8] with a metric tensor of Fisher information
[9] (equivalent for thermodynamic systems to the equilib-
rium fluctuations of the conjugate force), and showed how
to experimentally measure this quantity using work fluc-
tuation relations [10]. In this Letter, we show that a micro-
scopic and generalized formulation of thermodynamic
length analysis can be derived directly from linear-
response theory, without recourse to endoreversibility.
The resulting thermodynamic metric structure imbues op-
timal processes with several important properties: optimal
paths (those that minimize dissipation) are geodesics [11],
dissipation is inversely proportional to protocol duration,
the optimal control parameter path is independent of dura-
tion, and optimal protocols perturb the control parameter
so as to accumulate excess work at a constant rate [6,12].

Derivation.—Linear response is a standard framework
for understanding fluctuations out of equilibrium [13].
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Here we derive a generalized thermodynamic length analy-
sis from linear response without resort to the assumption of
endoreversibility.

We assume a physical system in contact with a thermal
bath. The probability distribution over microstates x at
equilibrium is given by the canonical ensemble

7(x|N) = expB[F(N) — E(x, N)], (D
where B = 1/kgT is the inverse temperature T
of the environment in natural units, F(N)=

—kgT Ind , exp{—BE(x,\)} is the free energy, and
E(x, \) is the system energy as a function of the microstate
x and a collection of experimentally controllable parame-
ters N of the system. In the case of a gas confined to a
cylinder, a control parameter could be the position of the
piston imposing a particular accessible volume. For a
single macromolecule stretched between two optical traps,
the control parameter could be the distance between the
traps, imposing a harmonic energetic bias on the separation
of the optical beads, between which the macromolecule is
stretched. Control parameters can also represent collective
variables, order parameters, or reaction coordinates.

In equilibrium, the macroscopic state of the system (the
probability distribution over microstates) is completely
specified by values of the control parameters, but out of
equilibrium the system’s probability distribution over mi-
crostates fundamentally depends on the history of the
control parameter A, which we denote by the control
parameter protocol A. We assume the protocol is suffi-
ciently smooth to be twice time differentiable.

As formulated, this driving by a time-dependent
Hamiltonian can model a nonequilibrium steady state in
the rest frame of a constantly translating potential [14] or a
driven damped harmonic oscillator that settles into a limit
cycle. However, it cannot treat a steady state, defined by
time-independent probabilities for all system microstates
in the lab reference frame. Such a steady state, for example,
induced by planar shear, is more naturally modeled by
including a nonconservative force and corresponding dis-
sipative flux [15].

We adopt natural definitions of heat and work [16,17]: In
accordance with the first law the average instantaneous rate
of energy flow into the system, d{E) /dt, is the sum of the
average instantaneous rate of heat flow @ from the envi-
ronment into the system,

d(Q)p _ diT@
dt _<dl ax)A’ @

and the average instantaneous power P (rate of work W)
due to the external perturbation of the control parameters A,

_ d(W)n

P dt

T
= (X)A- 3)

Here X = —9JE/dN\ is the vector of forces conjugate to the
control parameters A, and angular brackets with subscript
A denote a nonequilibrium average over the ensemble
following the control parameter protocol A. For the macro-
molecule with the trap position as the control parameter,
the corresponding conjugate force would be the tension
with which extension is resisted by the entire construct of a
macromolecule, attached handles, and optical beads [10].

For a system initially at equilibrium at time #, and
control parameters A(f;), the average heat flow vanishes,
and the average power is

d\T

P (1) = _[Wlo  (Xnn 4)

where the angled brackets with subscript A(zy) denote an
ensemble average at fixed control parameters A(7).

Thus, for a system at time ¢#,, following an arbitrary
nonequilibrium protocol A with current control parameter
values A(7)), the average excess power exerted by the
external agent on the system, over and above the average
power on a system initially at equilibrium, is

a

Put) = -

], A(AX (), 5)

where AX(#)) = X(#y) — (X)\(,) is the deviation of the
conjugate forces X at time 7, from the average conjugate
forces X at equilibrium under control parameter A(z).

To first order in the magnitude of the external perturba-
tion, dynamic linear-response theory expresses the devia-
tion of the conjugate forces from equilibrium as an
integrated response to the perturbation [18],

Xy > [ dixt ~ 1) MO - M) ©)

where y;;(t) = ,Bdig‘(to» (1)/drt represents the response of
conjugate force X; at time ¢ to a perturbation in control
parameter A’ at time zero, and

EE;\(fo))(t) = (6X;(0)6X;(t)xr,) ™

is the coefficient of the covariance matrix %*)(z) for
conjugate forces X; and X; separated by time 7 at constant
control parameters A(z,). This approximation assumes that,
over time scales where the response function
dXM0)(1)/d1|, is significantly different from zero, both
the nonequilibrium response (AX(7,))4 and the equilib-
rium change (X)) — (X)\(, - are linear in the control
parameter change N(fy) — N(f, — 7). Substituting Eq. (6)
into Eq. (5) simplifies the nonequilibrium expectation:
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d\T
P (ty) = [—] f dr
=8| .
Integration by parts gives

?ex<to>=ﬁ[‘w] [ arsoong - [B]
9)

where the boundary term at ¢ = f, vanishes trivially,
and the one at ¢ = —co vanishes given that
lim,_, o 2 (z, — ¢/) - N(¢') = 0. This is satisfied, for
example, when the system is initially at equilibrium.

We change integration variables to /=ty — ¢ and
Taylor expand the control parameter velocities at time
to — ¢ around their values at £,

[ -[a] (@) o

When the control parameter velocities change on time
scales slower than the relaxation time of the system’s force
fluctuations, we can keep only the constant term, yielding

P olt) = [‘N] g [Tarsooe-[5] an

This analysis collapses the integral of the time-
dependent covariance matrix into a single time-
independent (equilibrium) matrix {(A(zy)) with entries

£, (1)) = f drrs OO (), (12a)

= B [T ar@x,8X e (120)
This time-integrated force covariance matrix is the
Kirkwood formulation of the friction tensor [19,20].

We arrive at our central relations. The nonequilibrium
excess power P, along the protocol is determined by the
friction tensor and experimentally controlled parameter
velocities,

P o\(ty) = [dc’;] '“M"’))'[%],O‘ (13)

This expression is entirely local: Although, in general,
nonequilibrium properties depend on the perturbation his-
tory, our relation only depends on the instantaneous values
of the control parameter and its derivative.

The integral of the excess power over the control pa-
rameter protocol gives the mean excess work, W, =
J51dtP,,(t). This is the difference between the work the
external agent does on the system during the nonequilib-
rium protocol and the work that would have been done if
the protocol had been performed quasistatically, so that the
system remained at equilibrium throughout. It follows
from Eq. (13) that the excess power scales as |d\/dt|?

2()\(%)) ([ — [/)

a7 “[Mto) = M) ®)

and, for a given total transition time Af, the excess work
scales as |dN/dt|.

In general, at the conclusion of the protocol, some
fraction of this excess work will have been dissipated as
heat to the environment, and the remaining fraction re-
mains in the system, as an excess energy associated with
being instantaneously out of equilibrium [21]. If at the
conclusion of the protocol the system is allowed to fully
equilibrate, all this remaining energy will be dissipated,
and thus the excess work will equal the dissipation.

Any covariance matrix is symmetric and positive semi-
definite [22], and the conjugate-force covariance matrix
3 M) (z) varies smoothly with control parameter values
(except at macroscopic phase transitions). It follows that
the friction tensor (A (1)), the time integral of XA®)(z), is
symmetric, positive semidefinite, and smoothly varying
except at macroscopic phase transitions. Therefore, the
friction tensor { induces a Riemannian manifold on the
space of thermodynamic states [23]. Furthermore, positive
semidefiniteness of the friction tensor { guarantees that
excess power and work are non-negative, consistent with
the second law.

This metric endows protocols with a number of useful
properties. It defines a generalized thermodynamic length,
L = [5dt\P (1) and divergence J = At [5 dtP,,(1).
The excess work is proportional to the thermodynamic
divergence along the protocol, J = AtW,,. For a fixed
control parameter path, the corresponding thermodynamic
length is independent of the time interval Az and the
relative control parameter velocities en route, and places
a lower bound on the excess work, W, = L£2/At. By the
Cauchy-Schwarz inequality, this bound is only realized for
a protocol with a constant excess power [6,8].

Under a Riemannian metric, the shortest paths (and
therefore in our case the optimal, minimum excess work
protocols) are geodesics, the closest thing to a straight line
in a curved manifold. This property should simplify the
discovery of optimal protocols in complicated energy land-
scapes. Moreover, from the definition and scaling of the
thermodynamic length and divergence, it follows that the
control parameter path of an optimal protocol is indepen-
dent of the protocol duration. Increasing or decreasing the
duration does not change the optimal path in the linear-
response regime. Finally, we note that the metric structure
ensures that the excess work will be invariant to linear
transformations of the control parameters.

Discussion.—The present formalism generalizes
several other frameworks in the existing literature on
thermodynamic length. The control parameter friction ten-
sor can be decomposed into

LN (1)) = kgT T(N(1)) o I(A(19)), (14)
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the Hadamard product (entry-by-entry product) “o” of the
integral relaxation time matrix 7 and the Fisher informa-
tion matrix I, scaled by kzT. The Fisher information is
defined as [24]

d Inmr(x|N) 0 Inar(x|N)
I..\) = : : 15
s = (R SRR o as)
For a system in thermal equilibrium (1), this simplifies to
B*(8X;6X ), the covariance of the forces conjugate to
control parameters A’ and A/ [8]. The integral relaxation

time [25],

(N = f © g OXHOOXT)) (16)

0 <5XJ6XI>)\ ’

generalizes to multiple dimensions and nonexponential
relaxation kinetics the more familiar relaxation time 7%
{the time constant in exponential relaxation kinetics where
correlations decay over time according to exp[—1/7@]}.

Equation (14) allows for an integral relaxation time that
varies with the current control parameter value. When the
relaxation time does not vary with the control parameter,
the Riemannian metric reduces to the Fisher information
metric [26], recovering the microscopic thermodynamic
length formulation of [8]. Nevertheless, the generalization
to varying integral relaxation time is important, as in many
systems we expect the relaxation time to vary substantially,
especially near transition interfaces separating metastable
basins of attraction.

In general, the Fisher information is related to Schlogl’s

metric, the second derivative of the free entropy ¢y = — BF,
by I(\) = — "’(;ff + ("’;)@E}. The last term vanishes when

the energy is linear in the control parameters, when the
control parameters are intensive, or when the control pa-
rameters are extensive in the macroscopic limit. In these
limits, we recover the original formalism as the differential
geometry of thermodynamic potentials [2-5].

Expressing the metric in terms of a friction tensor in
thermodynamic state space helps clarify the nature of
thermodynamic length. Roughly speaking, this friction
represents the resistance of the system to control parameter
changes that are imposed in finite time. According to
Eq. (14), for a fixed control parameter velocity dA/dr,
the excess power is greater where the control parameter
friction coefficient { is greater. Hence the excess work is
reduced when the protocol proceeds slower in regions of a
high friction coefficient, which can occur when the relaxa-
tion time or equilibrium fluctuations are large.

In Cartesian space, the friction tensor (also known as the
inverse diffusion tensor) has been posited as a metric tensor
[27-29], and used to understand the connectivity of white
matter in the brain [30] and the paths of electrical excita-
tion waves in cardiac tissue [31]. de Koning and Antonelli
[32] derived a similar expression for excess work (but
assumed simple exponential relaxation time) using similar

linear-response arguments. Tsao, et al. [33] derived a
similar expression assuming endoreversibility (but with
the integral relaxation time replaced by the endoreversible
lag time, the elapsed time since the control parameters had
values for which the current distribution over microstates is
an equilibrium distribution). The case of nonexponential
kinetics, the connections to thermodynamic length analy-
sis, and the interpretation in terms of a friction tensor in
thermodynamic state space have not to our knowledge
been previously reported.

Applications.—We now demonstrate a simple expres-
sion for the control parameter protocol that minimizes
the excess work for a system with one control parameter,
given that it must transition between points A, and A, in
fixed time At. The optimal control parameter protocol is
found via the Euler-Lagrange equation [34] for this prob-
lem, with cost function f(A(¢), A) = £(A)A2,

_af dfof

0= F7) d[[ﬁ] = —2{(V)A = '(V)A% (17)

This has the solution

(A — L)L)~
f@t d[/é«(/\(t/))f(l/z)

Thus, in the single control parameter case, the optimal
protocol proceeds with a velocity inversely proportional
to the square root of the control parameter friction, eval-
uated for the current value of the control parameter, and
hence [using Eq. (13)] has a constant excess power. Where
the system experiences large friction in thermodynamic
state space, the optimal control parameter protocol will
change slowly. The time interval Az only sets the propor-
tionality constant, but not the relative velocities at different
points in the protocol.

The general multiple-parameter case does not admit of a
straightforward optimization. But we can extend this
analysis to the optimization of a particular two-parameter
protocol: a particle diffusing in a harmonic potential ac-
cording to the overdamped Langevin equation with
Cartesian friction coefficient (¢, with control parameters
the location y and spring constant k& of the harmonic
potential. We perturb the system from (y,, k,) to (v, k)
in a fixed time interval At. The control parameter friction

tensor is
<0
§=<% gc) (19)

413

AoP(f) = « (M)~ 12 (18)

Since this matrix is diagonal, and the k, k term is indepen-

dent of y and the y, y term is independent of k, the protocol

can be optimized for each control parameter separately

using Eq. (18), yielding for the optimal protocol
d. _ Vb~ Ya ﬁkfl/zzw
a’ At T dr At

(20)
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Under the optimal protocol, the trap center and inverse
square root of the spring constant each change at a constant
rate, independent of time. This corresponds to changing the
equilibrium mean and standard deviation of position at a
constant rate.

Seifert and coworkers elegantly derived the exact opti-
mal protocols for perturbing the position and spring
constant separately, for both over-damped [35] and
under-damped [36] Langevin dynamics. Their analysis
found optimal protocols similar to ours but with discrete
control parameter jumps at the beginning and end of the
protocol (though these jumps are smoothed to boundary
layers under regularization that penalizes acceleration
[37]). Our method misses such protocol jumps because
our derivation assumes that the velocities of protocols
change smoothly. Other than the discrete jumps at the
boundaries, our approximation produces results that near
equilibrium differ from optimal values by, to leading order,
a dimensionless measure of distance from equilibrium,
Z¢/(kAt). Such exact results are useful where they are
tractable, but the thermodynamic metric provides a conve-
nient, general computational framework, especially in
complex systems.
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