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A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably,

although we can measure the free energy of a system in thermodynamic equilibrium, typically all we

can say about the free energy of a nonequilibrium ensemble is that it is larger than that of the same system

at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven

system, which involves path ensemble averages of the work over trajectories of the time-reversed system.

From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean

time-reversed work, which can be experimentally measured on real systems. With analysis and computer

simulation, we demonstrate the accuracy of our approximations for several simple models.
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Recent advances in nanotechnology make it increas-
ingly possible to engineer molecular scale structures for
the deliberate and efficient manipulation of energy, matter,
and information on the nanometer scale. Artificial micro-
scopic machines include heat pumps designed for very
localized cooling; osmotic membranes built from carbon
nanotubes; quantum logic gates designed to manipulate
and stabilize quantum information; nanostructured thermo-
electrics; devices for the capture and separation of carbon
dioxide; and efficient photovoltaic solar cells.

Notably, molecular scale machines typically operate far
from thermodynamic equilibrium, limiting the applicability
of equilibrium statistical mechanics. Formulating a physi-
cally meaningful measure of the distance from equilibrium
is itself an area of active research. Previous work developed
a quantitative measure of the time asymmetry of ensembles
of trajectories [1]; in this Letter we quantitate the distance
from equilibrium at one instantaneous snapshot, as ex-
pressed by a nonequilibrium generalization of free energy.
While at equilibrium the free energy of a system is mini-
mized (given the external constraints) and is often relatively
easily measured, out of equilibrium no standard measure-
ment technique exists, impeding the quantitative under-
standing of nonequilibrium behavior. To partially redress
this deficit, we herein develop an experimentally tractable
approach to measure the free energy of systems away from
equilibrium. We find that to a strikingly good approxima-
tion, the difference between the free energy of a nonequi-
librium ensemble and the equivalent system in equilibrium
is determined by an excess mean time-reversed work,
Eq. (19). The nonequilibrium probability of any given
microstate is also well approximated by a similar excess
mean time-reversed work, Eq. (21).

We consider a physical system in contact with a constant
temperature heat bath with reciprocal temperature � ¼
ðkBTÞ�1, where kB is Boltzmann’s constant. The system
has a collection of experimentally controllable parameters
�; for instance, for a confined gas a control parameter

could be the position of a piston dictating the volume of
the chamber. To simplify the discussion throughout we
refer to a single control parameter, though our analysis
generalizes trivially to multiple control parameters. The
free energy of the system, in or out of equilibrium, can be
defined as [2] F � hEi � S=�, for mean energy hEi �P

xPðxÞEðxÞ and entropy S ¼ �P
xPðxÞ lnPðxÞ in natural

units. Here, x labels the microstates of the system.
This generalizes the equilibrium free energy as a func-

tional on the equilibrium distribution of microstates, to the
nonequilibrium free energy as the same functional on any
(in general, nonequilibrium) distribution of microstates.
Other rationales for calling this quantity a free energy are
found in results for a system evolving according to a master
equation. For such a system, when the control parameter is
held fixed, this free energy difference is a nonincreasing
function of time. If the system is allowed to fully equili-
brate, it is equal to the total entropy produced (also known
as the extropy) [3]. Hence this free energy difference has
also been called an entropy deficiency [4]. Equivalently, if
the system is coupled to a mechanical system, this free
energy difference equals the maximum work that can be
done on that mechanical system while the original system
relaxes to equilibrium (also known as the exergy) [5,6].
Interestingly, the free energy difference between two

ensembles with identical values of the control parameter,
one distributed among microstates according to the equi-
librium probability distribution P

eq
� ðxÞ ¼ expf�½Feq

� �
E�ðxÞ�g and one out of equilibrium and distributed accord-
ing to Pneq, is equal to the relative entropyDðPneq k Peq

� Þ �P
xP

neqðxÞ ln½PneqðxÞ=Peq
� ðxÞ� between the two probability

distributions [2]:

DðPneq k Peq
� Þ ¼ �Sneq �X

x

PneqðxÞ�½Feq
� � E�ðxÞ�

¼ �Sneq � �F
eq
� þ �hE�ineq

¼ �ðFneq
� � F

eq
� Þ: (1)
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Here, E�ðxÞ is the energy of microstate x given control
parameter value �, angular brackets with subscript ‘‘neq’’
denote an average over the nonequilibrium distribution
Pneq, Sneq is the entropy of Pneq, and F

eq
� and F

neq
� are,

respectively, the equilibrium and nonequilibrium free en-
ergies with control parameter value �. Thus, in both a
thermodynamic and information theoretic sense, this free
energy difference between nonequilibrium and equilibrium
ensembles measures a distance from equilibrium.

A nonequilibrium ensemble is specified by a protocol �
that describes the history of the control parameter over
some time interval: beginning at control parameter value
�a at time ta, the control parameter is changed according to
� until it reaches value �b at time tb. In the corresponding

time-reversed protocol ~�, the system starts at time tb with
the final parameter �b of the forward protocol, and then the
controllable parameter retraces the same series of changes,
in reverse, over a time interval of length tb � ta to end at
time ta with the initial value �a of the forward protocol.
Measurements performed on a system using a pair of

conjugate protocols � and ~� are related by [7]

hAi�a;� ¼ h ~Ae��Wi�b; ~�
=he��Wi�b; ~�

: (2)

Here,A is a measurement of the system (any real function

of the phase space trajectory), ~A is the corresponding

time-reversed measurement (defined by A½x� ¼ ~A½~x�
where x and ~x are a phase space trajectory and its time
reversal, respectively), andW is the work performed on the
system during the (forward or time-reversed) protocol. The
angled brackets indicate that measurements are averaged
over an experimental protocol, specified by subscripts: the
first subscript indicates the initial preparation of the sys-
tem; the second subscript, after the semicolon, indicates
the protocol during measurement. Thus ‘‘�a; �’’ specifies
that the system is equilibrated with fixed parameter �a and
then the properties of the system are measured while the

system is driven with protocol �, whereas ‘‘�b;
~�’’ in-

dicates initial equilibration at �b followed by measurement

during the time-reversed protocol ~�. If the preparation
protocol is not explicitly stated, as is the case in many of
our previous papers, then implicitly the system is prepared
at equilibrium with the initial control parameter of the
measurement protocol.

We will use Eq. (2) to relate nonequilibrium probability
distributions to moments of the work distribution. First, we
replace the generic measurement A with a delta function
�½xðtbÞ � x� of the final system microstate xðtbÞ. This gives
a relation between the nonequilibrium probability of a
microstate, and a nonlinear average of the work performed
on the system during the time-reversed protocol, starting
from that microstate [7]:

P�a;�ðxÞ ¼ h�½xðtbÞ � x�i�a;�

¼ h�½~xðtbÞ � x�e��Wi�b; ~�
=he��Wi�b; ~�

¼ P�b
ðxÞhe��Wix; ~�=he��Wi�b; ~�

: (3)

The subscript ‘‘x; ~�’’ indicates initial preparation of the
system in microstate x and subsequent work measurement

during protocol ~�. Next, we rearrange the previous ex-
pression as in Ref. [8],

ln
P�a;�ðxÞ
P�b

ðxÞ ¼ ln
he��Wix; ~�
he��Wi�b; ~�

; (4)

and factor out work averages to arrive at

ln
P�a;�ðxÞ
P�b

ðxÞ ¼ ��ðhWix; ~� � hWi�b; ~�
Þ þ �Kx; ~�; (5)

�Kx; ~� � ln
he��ðW�hWix; ~�Þix; ~�
he��ðW�hWi�b ; ~�Þi�b; ~�

: (6)

Averaging over the nonequilibrium distribution gives the
free energy difference

F�a;� � F�b
¼ �ðhWi�a;�;~� � hWi�b; ~�

Þ þ hKx; ~�i�: (7)

Here F�b
is the equilibrium free energy under control

parameter value �b, and F�a;� is the nonequilibrium free

energy upon completion of protocol � following initial

equilibration at �a. The subscript ‘‘�a, �; ~�’’ indicates
initial preparation of the system by forward protocol� and

subsequent work measurement during reverse protocol ~�.
These relations for nonequilibrium probabilities and free

energy are formally exact, yet impractical. In particular,
the exponential averages in Eq. (6) are dominated by low
dissipation realizations of the protocol, which are ex-
tremely rare [9].
To proceed further we develop a tractable approximation

by examining, for a given nonequilibrium distribution
P�a;� at the conclusion of protocol�, a family of nonequi-

librium distributions P�a;�
�ðxÞ � P�b

ðxÞ þ �½P�a;�ðxÞ �
P�b

ðxÞ�. These distributions P�a;�
� are produced by proto-

cols ��, which with probability � reproduce the original
protocol� and with probability 1� � perform a reversible
(quasistatic) protocol between the same two end points �a

and �b. In the near-equilibrium limit as � ! 0, expanding
the relative entropy in � [10] gives

DðP�a;�
� k P�b

Þ ¼ X
x

P�b
ðxÞ½1þ �PðxÞ�� ln½1þ �PðxÞ��

¼ 1

2
h�P2i�b

�2 � 1

6
h�P3i�b

�3 þOð�4Þ;
(8)
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for the relative probability difference �PðxÞ � ½P�a;�ðxÞ �
P�b

ðxÞ�=P�b
ðxÞ. The second line follows from Taylor

expansion of the logarithm about �PðxÞ� ¼ 0 and conser-
vation of probability which imposes

h�Pi�b
¼ X

x

P�b
ðxÞ�PðxÞ ¼ 0: (9)

Note that the leading-order term in Eq. (8) is one-half the
Fisher information [11].

Under linear response [12], deviations from equilibrium
are expressed as an integrated response to external pertur-
bation,

h�GðtbÞi�a;� ¼ �
Z tb

t0¼�1
dt0½�ðt0Þ � �b�

� d

dt0
h�GðtbÞ�Bðt0Þi�b

: (10)

Here, the control parameter � couples to the energy with
conjugate force B � �@E=@�. h�Gi�a;� is the average

deviation of measurement G (any real function of a point
in phase space) at the conclusion of protocol � (running
between times ta and tb) from its equilibrium value at the
final control parameter value �b. �Y � Y � hYi�b

is the

instantaneous deviation of any variable Y from its equilib-
rium value for control parameter value �b.
h�GðtbÞ�Bðt0Þi�b

is the covariance between the respective

deviations from equilibrium averages of the measurement
G and the conjugate force B, separated by time tb � t0, at
equilibrium under control parameter value �b.

Integration by parts produces

h�GðtbÞi�a;� ¼ ��
Z tb

t0¼�1
dt0

d�ðt0Þ
dt0

h�GðtbÞ�Bðt0Þi�b
:

(11)

The boundary terms make no contribution because for an
ergodic system all measurements separated by infinite time
are uncorrelated, and thus limt0!�1h�GðtbÞ�Bðt0Þi�b

¼ 0.

Pulling the integral inside the average and substituting

W~� ¼ Rtb
ta dt

0 d�
dt0 B produces

h�GðtbÞi�a;� ¼ ��hGðtbÞW~�i�b
þ �hGi�b

hW~�i�b
: (12)

Substituting GðtbÞ ¼ �½xðtbÞ � x� gives
�PðxÞ ¼ ��ðhWix; ~� � hWi�b; ~�

Þ: (13)

This relation can also be derived by multiplying and
dividing Eq. (2) by e���Feq

and substituting the Jarzynski

equality, he��ðW��FeqÞi�b; ~�
¼ 1, producing an alternative

formulation of the path-weighted average,

hAi�a;� ¼ h ~Ae��ðW��FeqÞi�b; ~�
: (14)

We subtract the final equilibrium average of A from both
sides and substitute the Jarzynski equality again to get

hAi�a;� � hAi�b
¼ h ~Ae��ðW��FeqÞi�b; ~�

� hAi�b

�he��ðW��FeqÞi�b; ~�
: (15)

Substituting A ¼ �½xðtbÞ � x� produces
�PðxÞ ¼ he��ðW��FeqÞix; ~� � he��ðW��FeqÞi�b; ~�

: (16)

Expanding near equilibrium to first order inW � �Feq, we
arrive at (13).
If instead of � we apply protocol ��, a similar deriva-

tion produces

�PðxÞ� ¼ ��ðhWix; ~�� � hWi�b; ~�
�Þ: (17)

Averaging over the nonequilibrium distribution
P�a;�

�ðxÞ ¼ P�b
ðxÞ½1þ �PðxÞ�� gives

h�P2i�b
�2 ¼ ��ðhWi�a;�

�; ~�� � hWi�b; ~�
�Þ; (18)

where the Oð�Þ term on the left-hand side is zero by
Eq. (9).
Substituting into the relative entropy expansion [Eq. (8)]

and making use of the relation between relative entropy
and free energy [Eq. (1)], the difference between the free
energy of a nonequilibrium ensemble and the equivalent
system at equilibrium is, to lowest order in �, equal to
minus one-half an excess mean time-reversed work:

F�a;� � F�b
� �1

2ðhWi�a;�;~� � hWi�b; ~�
Þ: (19)

Here, finally, is our desired result. This free energy differ-
ence is readily measurable since it is minus one-half the
average work hWi�a;�;~� when the system is prepared with

protocol � starting from equilibrium at �a and then driven

with the time-reversed protocol ~�, less the average work
hWi�b; ~�

when prepared in thermal equilibrium at �b and

then driven with ~�.
Comparing Eqs. (7) and (19), our central result requires

hKx; ~�i�a;� � 1
2ðhWi�a;�;~� � hWi�b; ~�

Þ: (20)

This is trivially satisfied when Kx; ~� is independent of x.

Substituting this ansatz into Eq. (5) gives a more manage-
able expression for the near-equilibrium probability distri-
bution,

ln
P�a;�ðxÞ
P�b

ðxÞ � ��

�
hWix; ~� � 1

2
ðhWi�b; ~�

þ hWi�a;�;~�Þ
�
:

(21)

Our derivation invokes the near-equilibrium limit, yet
our expressions hold in wider contexts. Consider a system
where they are exact: a micron-sized bead is suspended in
water by an initially stationary optical laser trap with
spring constant k, that is then translated at a constant
velocity v, dragging the bead through the fluid with friction
coefficient � . This system has been studied experimentally
[13,14] and can be modeled by a single particle undergoing
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diffusive Langevin dynamics on a moving, one-
dimensional harmonic potential. The pertinent properties
of the model have been analyzed [15,16]. Work distribu-
tions for a given initial particle position are Gaussian, with
a mean work that depends linearly on the initial position of
the particle relative to the center of the trap, and a position-
independent variance. The equilibrium probability distri-
butions are Gaussian, and the nonequilibrium probability
distributions are also Gaussian, with the same variance, but
shifted to a different mean relative to the equilibrium
distribution. Consequently, our expressions for near-
equilibrium probabilities and free energies are exact for
this model at any driving rate, hence arbitrarily far from
equilibrium. The free energy difference takes the simple
form �2v2=ð4kÞ.

Empirically, our expressions are good approximations
across a more general class of systems. To demonstrate
this, we explore a system for which the steady-state prob-
abilities, free energies, entropies, and work distributions

can be calculated exactly (within floating point accuracy).
We simulate an overdamped particle diffusing over a peri-
odic, sinusoidal, one-dimensional energy landscape. The
particle begins at equilibrium for a fixed potential, and then
the potential is translated at a constant velocity (Fig. 1).
Position and energy are discretized; hence, all interesting
properties of the system can be efficiently calculated using
dynamic programming algorithms [18,19]. See Fig. 1 for
details.
Figures 2 and 3 demonstrate that for this model

our steady-state probability [Eq. (21)] and free energy
[Eq. (19)] approximations are accurate given slowly shift-
ing landscapes or high temperatures, and only diverge
significantly from the exact results in strongly driven sys-
tems. We also find that qualitatively similar results arise for
aperiodic potentials and for different potential surfaces
(data not shown). Fractional errors in the free energy
estimate empirically equal �0:2��Fexact in the near-
equilibrium limit (Fig. 3), suggesting the next term in a
near-equilibrium expansion.
In this Letter, we have developed a practical method for

measuring free energies in the near-equilibrium regime,
and our simulation results indicate that the approximate
relation between free energy and excess mean time-
reversed work is accurate a substantial distance from equi-
librium. Our analysis should be directly applicable to ex-
isting single-molecule experiments where the reverse
protocol follows rapidly on the forward protocol, preclud-
ing equilibration [20]. We have concentrated on systems

FIG. 2 (color online). Equilibrium (þ ), steady-state (� ), and
approximate steady-state (h) [Eq. (21)] probability distribu-
tions, for the system described in Fig. 1, at various driving rates
and temperatures. Driving rates are reported in the dimensionless
velocity v� � v‘=D for repeat length ‘ and diffusion coefficient
D. The quality of our approximate distributions, including over-
all normalization, deteriorates at low temperature and high
driving velocity. The dotted box highlights the conditions shown
in Fig. 1.

FIG. 1 (color online). A simple driven system, amenable to
numerical calculations. (a) Energy as a function of position. A
single particle occupies a periodic, one-dimensional energy
landscape. The position coordinate is discretized into Nx uni-
formly spaced positions per period. Energy is also discretized,
EðxÞ ¼ bNeð1þ sinð2�x=NxÞÞ=2c=Ne, for position x and number
Ne of discrete energy bins. Nx and Ne are increased until results
do not change appreciably with a finer discretization. (b) The
system is initially in equilibrium with an external heat bath (þ ).
At each discrete time step, the particle attempts to move one step
left, one step right, or remain in the same location with equal
probabilities, and the move is accepted according to the
Metropolis criterion [17]. Every 1=v time steps, the energy
surface shifts one position to the right. To ensure fully time-
reversible dynamics, we simulate 1=2v time steps, shift the
potential, and simulate another 1=2v time steps before examin-
ing the nonequilibrium properties of the system. All figures are
drawn in the rest frame of the potential. Eventually the spatial
distribution across a single periodic image converges to a non-
equilibrium steady state (� ), approximated by Eq. (21) (h).
Displayed results are for v� ¼ 24, and reciprocal temperature
� ¼ 4 reported in inverse units of the energy difference between
top and bottom of the potential.
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driven from equilibrium by a mechanical perturbation, but
our relations could be generalized to other situations, for
example, a system driven by a temperature gradient [21].
Verifying our approximations in more complex systems
will require independent measurements of nonequilibrium
free energies; one possible approach for simple fluids
would be to computationally estimate entropies from mul-
tiparticle distribution functions [22].
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FIG. 3 (color online). The approximate steady-state free
energy difference per periodic image, ��Fapprox [Eq. (19)], is

very close to the exact steady-state free energy difference
��Fexact ¼ �ðF�a;� � F�b

Þ, as shown by the fractional error

1��Fapprox=�Fexact being much less than unity. Colors denote

temperatures ranging from hot (� ¼ 1=4, red, bottom left) to
cold (� ¼ 32, black, top right), with dimensionless velocity
varying from v� ¼ 3 (diamonds) to v� ¼ 48 (crosses).
Empirically for this system, ��Fapprox is always less than

��Fexact, and the fractional error shows a power-law depen-
dence on exact free energy with exponent �1 (dotted line plots
1
5��Fexact). Note that before convergence to steady state, frac-

tional errors do not collapse onto a single curve even at low �.
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