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Geometric approach to optimal nonequilibrium control:
Minimizing dissipation in nanomagnetic spin systems
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Optimal control of nanomagnets has become an urgent problem for the field of spintronics as technological
tools approach thermodynamically determined limits of efficiency. In complex, fluctuating systems, such as
nanomagnetic bits, finding optimal protocols is challenging, requiring detailed information about the dynamical
fluctuations of the controlled system. We provide a physically transparent derivation of a metric tensor for
which the length of a protocol is proportional to its dissipation. This perspective simplifies nonequilibrium
optimization problems by recasting them in a geometric language. We then describe a numerical method,
an instance of geometric minimum action methods, that enables computation of geodesics even when the
number of control parameters is large. We apply these methods to two models of nanomagnetic bits: a Landau-
Lifshitz-Gilbert description of a single magnetic spin controlled by two orthogonal magnetic fields, and a
two-dimensional Ising model in which the field is spatially controlled. These calculations reveal nontrivial
protocols for bit erasure and reversal, providing important, experimentally testable predictions for ultra-low-power
computing.
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I. INTRODUCTION

Modern computers dissipate a vast amount of energy as
heat, greatly in excess of the minimum thermodynamic cost
of logic operations for classical bits [1,2]. Recent experiments
have demonstrated that magnetic spintronics can be used to
implement logic operations on thin nanomagnetic films, pro-
viding a route to extremely low dissipation computing [3–10].
However, thermodynamically ideal control cannot be realized
in the laboratory, because any finite-time transformation must
dissipate heat. The amount of dissipation depends on the pro-
tocol used for control: the protocol that dissipates the minimal
amount of excess work to the environment is “optimal.” Other
objectives of nonequilibrium control, such as speed or accu-
racy [11,12], could be used to define optimality in more general
contexts. Moreover, there has been substantial interest recently
in tradeoffs among energy, speed, and accuracy [13,14].

When we control a nanoscale physical system and drive it
away from equilibrium, the character and extent of its fluctua-
tions depend on the history of the perturbation that we apply.
Each external protocol used in an irreversible, nonequilibrium
transformation has an associated energetic cost: the reversible
work plus excess work that is dissipated to a thermal reservoir.
At the nanoscale, the cost of control is not a deterministic
quantity. Because the fluctuations in the controlled system
have a scale comparable to the extent of the system itself,
the dissipation fluctuates, varying from one realization of the
protocol to another. The inherent noise associated with small
systems adds a layer of complexity to the problem of designing
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protocols that favor low dissipation. Nevertheless, theoretical
advances in nonequilibrium statistical mechanics [15–17]
and new experimental tools [10,18,19] have inspired a wide
range of efforts to find protocols that minimize the dissipated
work and achieve efficient control of fluctuating nanoscale
systems.

Here, we compute the optimal protocol for driving a
nanomagnetic bit from a state aligned with the “hard” axis
to a state aligned with the “easy” access. This process is an
important step of experimental bit erasure protocols [10,20].
The bit is described as the magnetic moment of an anisotropic
nanomagnetic film, and we control external fields that couple
to the easy and hard axes of the underlying magnet. This model
has been widely and successfully used to describe spintronic
systems [5,21,22].

The idealization of an isolated bit neglects local, ferromag-
netic interactions arising from spin-spin coupling. Such inter-
actions affect the response of the system to external control,
so we also study low dissipation bit reversal by computing
the optimal protocol to invert the net magnetization of a
ferromagnetic Ising model with two energetically degenerate
metastable states. In this model, the intricate spectrum of
local fluctuations can be overcome by spatially controlling the
external field. We control the external magnetic field over small
blocks of spins, independently tuning the field strength over
domains of a few interacting spins. This setup leads to a very
high-dimensional space of control parameters, and solving
the optimization problem requires the development of new
computational tools.

The complex interplay between nonlinear dynamics
and time-dependent external forces in the systems that we
consider puts them outside the reach of analytical treatment.
While there is a substantial literature on minimum dissipation
control, previous theoretical work on optimal protocols has
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largely focused on exactly solvable systems [23–26]. The
limited set of systems that can be formally analyzed has
inspired recent efforts to compute low-dissipation protocols
using numerical techniques [27–30].

The development of numerical strategies to determine opti-
mal protocols has, in part, relied on a geometric interpretation
of minimum dissipation protocols. In the linear-response limit,
an optimal protocol can be characterized as a geodesic on a
Riemannian manifold [24,31–33]. We provide a physically
transparent derivation of the corresponding metric tensor,
which assumes only a separation of time scales between the
controlled system and the protocol. The equilibrium fluctua-
tions and time correlations at different values of the external
control parameters determine a metric tensor, which defines a
generalized length proportional to the amount of excess work
done along the protocol. If the control parameter space is
sufficiently small, this metric can be sampled exhaustively at a
discrete set of control parameter values. Geodesics can then be
determined accurately using the fast marching method [34], as
in Ref. [27]. Unfortunately, the cost of computing the metric
tensor scales exponentially with the number of independent
control parameters, rendering this technique inefficient for
high-dimensional protocol spaces.

Reference [28] uses path sampling techniques to har-
vest nonequilibrium protocols in proportion to their average
dissipation. Trajectory space Monte Carlo techniques have
also been developed for use in stochastic optimal control
theory to iteratively refine importance sampling distribu-
tions [29,30,35], exploiting the connection between impor-
tance sampling and optimal control [36,37]. With a bias that
favors low dissipation, Gingrich et al. [28] explore an ensemble
of low dissipation protocols and show that there is a large
number of protocols with a dissipation near the minimum
achievable value. For a high-dimensional protocol, exploring
fluctuations in the protocol space remains a significant com-
putational challenge.

Here, we demonstrate that the geometric structure of the
protocol space enables the use of a geometric minimum
action method [38,39] to identify the optimal nonequilibrium
driving. The geometric minimum action method produces an
equation of motion for the protocol, derived in the Appendix.
Because we update a quasi-one-dimensional “string,” the
amount of computation needed to relax the protocol does
not grow exponentially in the number of dimensions. The
method relies on only local equilibrium sampling, meaning
that we can productively compute optimal protocols even in
high-dimensional control spaces.

The goal of reducing the excess work done on the system
has many applications outside of low-dissipation computing.
Nanoscale engine optimization is one such direction: recent ex-
periments have implemented fluctuating, microscopic variants
of the Carnot [40] and Stirling [41] cycles. In these fluctuating
engines, the excess power is dissipated to the heat bath,
rather than being converted to work. As a result, minimum
dissipation protocols maximize the engine’s thermodynamic
efficiency at finite power. Also, in nonequilibrium experiments
that determine free-energy differences via the Jarzynski
equality [15], minimum dissipation protocols determine the
free-energy difference with the highest possible accuracy for
a fixed, finite number of samples [42,43].

II. GEOMETRIC CHARACTERIZATION OF OPTIMAL
PROTOCOLS

To compute the optimal nonequilibrium protocols for
controlling nanomagnetic bits, we rely on the thermodynamic
length formalism [24,32,33]. In Sec. III we prove that the
minimum dissipation protocol is a geodesic on the manifold
of control parameter values when the rate of driving is slow
relative to the dynamics. We consider a system with coordi-
nates x ∈ Rd and control the system with a time-dependent,
nonequilibrium protocol λ(t) = [λ1(t), . . . ,λN (t)] ∈ RN,

t ∈ [0,T ] for some T > 0. As we will see below, our results
will be independent of T provided that the protocol is slow
relative to the dynamics of x. We assume that we can
independently tune the components of λ, which we refer
to as the “control parameters.” The dynamics of the system
is governed by an overdamped Langevin equation with a
time-dependent potential V that depends parametrically on
the protocol,

ẋ = −1

ε
∇V (x(t),λ(t)) +

√
2

βε
η(t). (1)

The reciprocal temperature is denoted by β, and η(t) is
Gaussian random noise with zero mean and covariance,
〈ηi(t)ηj (t ′)〉 = δij δ(t − t ′). The parameter ε � 1 is propor-
tional to the friction coefficient for the dynamics of the system
and sets a separation of time scales between the system and
the protocol: when ε is small, the dynamics of the underlying
system x(t) are much faster than the changes in protocol λ(t).

An optimal protocol λ(t) minimizes the average micro-
scopic work 〈Wε〉, where the expectation, denoted 〈·〉, is
performed over stochastic trajectories x(t) that begin in
equilibrium. In the limit of infinitely slow driving, the system
remains in equilibrium at every point in time, and the
transformation is thermodynamically reversible. If the system
is driven by the protocol at a finite rate, then work must be
done and a positive amount of energy is dissipated on average.
For a fixed, deterministic protocol λ(t), the heat absorbed by
the bath can be computed as a stochastic integral [44],

W̃ε = −ε−1
∫ T

0
∇V (x(t),λ(t)) ◦ dx(t), (2)

where ◦ denotes the time-symmetric Stratonovich product.
The expression for the heat (2) can be related to the familiar
stochastic thermodynamic expression for work,

Wε = ε−1
∫ T

0
∂λV (x(t),λ(t)) · λ̇ dt, (3)

by noting that dV (x(t),λ(t)) = ∇V (x(t),λ(t)) ◦ dx(t) +
∂λV (x(t),λ(t)) · λ̇ dt and integrating by parts. The quantity W̃ε

differs fromWε by a boundary term, which does not depend on
the protocol itself but only its end points. Its contribution to the
overall cost of control is fixed, and therefore it can be ignored in
our optimization problem. It should be noted, however, that the
boundary term could still make a very significant contribution
to the overall dissipation.

In Sec. III we prove that, in the limit of small ε, a natural
metric for the dissipation along a fixed protocol λ(t) emerges.
This metric has the form of a friction tensor [24] and quantifies
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the energetic cost of driving the system,

ζ (λ) =
∫ ∞

0
dτ 〈δX(x,λ)δXT(xλ(τ ),λ)〉λ, (4)

where X(x,λ) ≡ −β∂λV (x,λ), and xλ(τ ) denotes the solution
to (1) using the rescaled time τ = t/ε and keeping the control
parameters λ fixed. The notation 〈·〉λ denotes an equilibrium
average with the control parameters λ fixed as well. In
particular, it should be noted that x is initially drawn from and
samples an equilibrium distribution in the expectation above.
The length functional is then given by

L[λ] =
∫ T

0
dt

√
λ̇

T
ζ (λ(t))λ̇. (5)

Note that this length is independent of the parametrization of
λ(t) as well as T , which we could set to T = 1. If we impose the
constraint of constant speed along the protocol, then it suffices
to perform a minimization over the energy functional E[λ], in
which the integrand lacks the square root term; see (17).

To perform this minimization, we start with the Euler-
Lagrange equation for the geodesic minimizing (5). Written
componentwise, this equation reads

d

dt
(ζkj λ̇j ) = 1

2
λ̇i

∂

∂λk

ζij λ̇j

⇔ ζkj λ̈j + ∂ζkj

∂λi

λ̇j λ̇i − 1

2

∂ζij

∂λk

λ̇i λ̇j = 0, (6)

where repeated indices are summed, a convention used
throughout. At this point, we can take advantage of the symme-
try in the cumulants. When the relaxation time is constant, the
metric is proportional to the Fisher information metric. As a
result, the derivatives of the metric correspond to time-scaled
third cumulants and are invariant under the permutation of
indices. Under this assumption, the expression (6) simplifies
as

ζkj λ̈j + 1

2

∂ζij

∂λk

λ̇i λ̇j = 0, (7)

which we will write compactly using vectorial notation as
ζ λ̈ + 1

2∂λζ : λ̇λ̇ = 0.

With this geometric perspective, we can efficiently com-
pute minimum dissipation protocols using minimum action
methods [38,39]. In the Appendix, we detail an algorithm
that iteratively updates a trial nonequilibrium protocol and
converges to the optimum. The update step depends only
on fluctuations in the equilibrium dynamics at points along
the protocol. The principal advantage of this method over
alternative numerical approaches is its computational power,
remaining robust even when the protocol spaces are very
high-dimensional.

III. DERIVATION OF THE THERMODYNAMIC METRIC

The expression (3) defines the work done on the system
for a single realization of its stochastic dynamics. When there
are substantial fluctuations in the microscopic variables x, the
work Wε itself is a fluctuating quantity, as Eq. (3) depends on
the dynamics. To identify an efficient protocol, we want to find
a λ(t) that minimizes the average dissipation, as opposed to

focusing on rare trajectories of the controlled system x(t) that
yield anomalously low dissipation. To compute the average
over trajectories, we introduce an undetermined configura-
tional density ρ(x,t), which varies with time throughout the
duration of the protocol,

〈Wε〉 =
∫ T

0

∫
Rd

dt dx ∂λV (x,λ(t)) · λ̇ρ(x,t). (8)

The density ρ satisfies a Fokker-Planck equation associated
with the Langevin equation (1),

∂tρ = ε−1∇ · [∇V (x,λ(t))ρ + β−1∇ρ]. (9)

Because the driving is slow (ε � 1), we expand ρ around the
equilibrium density,

ρ0(x,t) = Z[λ(t)]−1 e−βV (x,λ(t)), (10)

at each point along the protocol,

ρ(x,t) = ρ0(x,t)[1 + εφ(x,t) + O(ε2)], (11)

where Z(λ) = ∫
Rd dx e−βV (x,λ) denotes the partition function

for a fixed value of the control vector λ. Using this expansion
in the Fokker-Planck equation (9), we find that the order ε

correction φ satisfies

∂t ln ρ0(x,t) = ∇V (x,λ(t)) · ∇φ(x,t) + β−1�φ(x,t). (12)

The left-hand side of (12) is explicitly

∂t ln ρ0(x,t) = β(−∂λV (x,λ(t)) · λ̇ + ∂λF
(
λ(t)

) · λ̇)

≡ −βδX(x,λ(t)) · λ̇, (13)

where F (λ) denotes the free energy −β−1 ln Z(λ). The
solution to the differential equation (12) can be expressed
via the Feynman-Kac formula as an average over a virtual
fast process xλ(τ ) in which the control parameters are kept
at a fixed value λ. The process xλ(τ ) satisfies an overdamped
equation of motion, with the initial condition xλ(0) = x,

d

dτ
xλ(τ ) = −∇V (xλ(τ ),λ) +

√
2

β
η(t). (14)

Denoting by 〈·〉λ an expectation taken over this process with
the initial condition as above, we have

φ(x,t) = −β

(∫ ∞

0
dτ 〈δX(xλ(t)(τ ),λ(t))〉λ(t)

)
· λ̇(t). (15)

The solution for φ(x,t) gives us an explicit expression for the
configurational density (11) up to order ε,

ρ(x,t) = Z−1[λ(t)]e−βV (x,λ(t))[
1 − εβ

(∫ ∞

0
dτ 〈δX(xλ(t)(τ ),λ(t))〉λ(t)

)
· λ̇(t)

]

+O(ε2). (16)

With this expression for the configurational density ρ, we can
compute the average excess microscopic work (8). The ε0 term
is just the free-energy difference between the initial and final
points of the protocol, and thus has no path dependence. The
work performed on the system in excess of that required to
overcome the free-energy difference at the end points of the
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protocol is quantified by the higher-order terms of 〈Wε〉. The
leading-order contribution can be expressed as

E[λ] = β

∫ T

0
dt λ̇

T
ζ [λ(t)]λ̇, (17)

where ζ (λ) is the tensor we defined in (4). This tensor is
a positive-semidefinite, symmetric, bilinear form, meaning
that it defines a semi-Riemannian metric on the space of
nonequilibrium protocols. The metric is related to Kirkwood’s
linear-response formulation of the friction tensor, and it can be
interpreted as quantifying resistance to changes in the control
parameters [24,45]. Minimizing the length of a protocol with
respect to the metric ζ minimizes the excess work, meaning
that geodesics in this space are minimum dissipation proto-
cols [24,33]. One advantage of this “geometric” description is
that the time over which the protocol is run does not alter it,
so long as the separation of time scales between the dynamics
and control is maintained. However, because the excess work
scales inversely with the duration of the protocol [24], smaller
values of T lead to higher average dissipation.

In what follows, we have made the additional simplification
that the Green-Kubo integral in (4) can be approximated as a
covariance multiplied by an effective time scale τeff, that is,

ζ (λ) = ∫ ∞
0 〈δX(0)δXT (t)〉λdt ≈ τeff〈δX(0)δXT (0)〉λ. (18)

We need not make the approximation (18), but doing so
simplifies the algorithm. We employ this simplified variant
throughout the paper, an assumption justified by the fact that
we are not near a phase transition.

IV. OPTIMAL BIT CONTROL IN A THIN MAGNETIC FILM

We represent a bit as the magnetic moment m of a
nanoscopic metal film. At this scale, thermal noise leads to
spontaneous changes in magnetic moment. The fluctuating
magnetic moment satisfies the stochastic Landau-Lifshitz-

Gilbert equation,

ṁ = m × (hext + hT) − αm × [m × (hext + hT)], (19)

where the field hT is a random thermal field, α is the Gilbert
damping parameter, and hext is the external field [46]. In the
case in which the magnet is a thin film, m is confined to the
xy plane and we assume that the magnitude is conserved.
The equation of motion for the angular direction of the
moment, θ , is given by a Langevin equation [47],

θ̇ = −αE′(θ ) +
√

2αβ−1 η(t), (20)

E(θ ) = β2 sin2(θ ) − hx cos(θ ) − hy sin(θ ). (21)

The noise η has mean zero and is δ-correlated in time.
Throughout, we set the anisotropy parameter β2 = 1, the
Gilbert damping coefficient to α = 10−2, and the inverse
temperature β = 1. The value of α is a realistic choice for
the materials commonly used in spintronics experiments [5].

We computed the optimal protocol for driving the system
from a state in which the magnetic moment is aligned along
the easy axis (θ = π/2) to a state aligned with the hard axis
(θ = π ). Driving the magnetic moment to the hard axis from
the easy axis is the final step in experimental protocols for
bit erasure as implemented on thin nanomagnetic films [10].
We took as an initial protocol a line from (hx,hy) = (0,3) to
(hx,hy) = (−3,0) discretized into ten equally spaced steps.
Using a time step dt = 10−4 for the dynamics of the magnetic
moment, we estimated the thermodynamic metric and its
derivatives with 10 000 simulation steps at each point along the
protocol. We propagated the protocol according to Eq. (A3)
with a time step of 10−6. The system converged in under 1000
iterations, and we ran a total of 10 000 iterations to ensure that
the protocol was fully relaxed.

The optimal protocol for driving the transition is shown in
Fig. 1(a). The blue region in the figure shows the portion

(a) (b)

(c)

FIG. 1. Optimal control of the magnetic moment of a thin nanomagnetic film using orthogonal fields hx and hy , as described in Sec. IV.
(a) The optimal protocol as determined by the geometric minimum action method. Inset: The potential energy of the system at the beginning
and end of the protocol. (b) A schematic of the control problem: a thin magnetic film is controlled by external fields hx and hy . (c) The x and
y fields as a function of protocol time. Note the significant deviation from the linear interpolations commonly used in experiments.
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FIG. 2. Optimal control of the 2D Ising model with spatial control of the magnetic field. (a) A schematic of the setup of the system.
Boundary conditions are fixed so that there are two distinct metastable states. The external field is tuned independently for the different spin
blocks. (b) An optimized protocol is shown (bottom) driving the transition. Representative structures from the configuration space are shown
(top).

of parameter space where there are two minima in the
potential. We used boundary conditions outside the region
of metastability to ensure unique initial and final equilibrium
states. The optimal protocol deviates in a nontrivial way from
the protocols used in experiments, in which each field is a linear
function of time [5,10]. Initially, the field in the y direction is
decreased while the field hx remains small. As the y field is
decreased, the minimum in the potential energy, as shown in
the inset of Fig. 1, shifts toward the final state at θ = π . The
orthogonal field increases the curvature around the potential
energy minimum as it shifts toward the negative x-axis.

Interestingly, the protocol plotted in Fig. 1 has a shape
similar to the boundary of the “astroid” regions described in
Ref. [47]. In Fig. 1, the blue region encloses a parameter regime
in which there is low probability of spontaneous bit reversal,
i.e., when there is metastability in the potential. Because
the protocol avoids this region, at any fixed point along the
protocol there is a unique equilibrium state.

V. CONTROL OF THE TWO-DIMENSIONAL ISING
MODEL WITH A SPATIALLY VARYING FIELD

Magnetic bits are stable on long time scales, due to the large
energetic barrier separating the +1 and −1 states. The inherent
stability of nanomagnets is one of the primary advantages of
magnetic spintronics from the engineering perspective because
no energy is required to maintain the state of the bit [10].
A nonequilibrium protocol for bit reversal must drive the
system over the large energetic barrier separating two states.
A naive protocol for this operation will be extraordinarily
dissipative [27], but more sophisticated control strategies
such as local heating and spatial control may lower the
thermodynamic cost of bit reversal in practice [48].

We investigate protocols in which the external field is
spatially controlled. We consider a ferromagnetic, 2D Ising
model below the critical temperature, so that the probability
of a spontaneous bit reversal is low. We take as our control
parameters N independent external magnetic-field strengths,

{hi}Ni=1, which couple to nonoverlapping blocks of spins as
shown in Fig. 2(a). We prepare the system with a fixed
boundary condition that creates two metastable states. On
the left and right sides, the boundary consists of all up-
spins. On the top and bottom, the boundary consists of all
down-spins. We then seek a protocol that drives the system
from a configuration in which the spin-up metastable state
is favored (hi = 0.05 for all i = 1, . . . ,N) to a region of the
protocol space where the spin-down configuration is favored
(hi = −0.05 for all i = 1, . . . ,N).

In our calculation, the protocol is discretized into 16
equally spaced points. We initialize the system with a protocol
that linearly interpolates the magnetic field between −0.05
and 0.05, so the initial protocol is spatially uniform. The
calculations were performed for 40 × 40 and 100 × 100
Ising models, controlling 4 × 4 and 10 × 10 block magnetic
fields, respectively. We carried out the geometric minimum
action method with a time step of 10−4. At each iteration,
10 000 sweeps of Monte Carlo dynamics with a Glauber
acceptance criterion were used to estimate the metric tensor
and its derivatives at each point along the discretized protocol.
These protocols converge to their final form in roughly 1000
iterations, but we continued to sample for 10 000 total
iterations. There is no significant dependence on system size.

The optimized protocol for inverting the magnetization is
shown in Fig. 2(b). The values of the external field are shown
on a gray scale, with spin blocks drawn according to their
location. On the top, we show the six snapshots of the spin
system near the transition between the metastable states. These
configurations of the system are representative of the states
seen along the optimized protocol.

The hourglass shapes seen in Fig. 2(b) are characteristic of
the spontaneous transition pathways between the metastable
states of this model [49]. First, the field reverses along the left
and right boundaries of the system. The work associated with
flipping these spins is minimal due to the layer of up-spins
from a fixed boundary condition. The protocol proceeds to
reverse the magnetization by continuing to grow those domains
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from the boundary until the bulk domain of up-spins can
be stabilized. The minimum dissipation protocol drives the
magnet from the negative metastable state to the positive
metastable state by flipping spins at the boundaries.

VI. CONCLUSIONS

Determining nonequilibrium driving protocols that mini-
mize dissipation for nanoscale systems has become a signif-
icant goal in both the molecular sciences and engineering.
Increasing the number of available control parameters leads
to more elegant and efficient strategies for control, but the
resulting increase in complexity demands new computational
tools. Under very general assumptions, the argument given in
Sec. III proves that the notion of thermodynamic geometry
emerges only from a time-scale separation between the
dynamics of the controlled system and the experimental
parameters. This derivation encompasses the linear-response
arguments in Ref. [24] but further elucidates the physical
origins of the thermodynamic metric.

The geometry of nonequilibrium control allows us to derive
a general, robust numerical method to compute optimal proto-
cols. In analogy to Lagrangian mechanics, the thermodynamic
length can be thought of as an action functional in the space of
protocols. Optimizing for minimum dissipation is equivalent
to minimizing this action. The geometric minimum action
method we describe in the Appendix can be used to compute
optimal protocols in previously inaccessible, high-dimensional
systems.

We applied these general tools to control problems moti-
vated by recent spintronics experiments using nanomagnetic
bits. Our calculations reveal protocols that deviate dramatically
from those protocols commonly used in experimental settings,
suggesting simple strategies for pushing computing closer to
the low-power limit.

The nontrivial protocol for changing the orientation of
the bit described in Sec. IV has an evocative structure. The
form of the optimal protocol mimics the astroid shape of
the boundary in parameter space between the metastable
regime and the stable regime. At this boundary, spontaneous
transitions between the initial and final configurations become
possible, perhaps indicating that the system is being driven
through a set of states that mimics an unperturbed transition.

In the interacting example of bit reversal with spatial
control over the external fields, Sec. V, the optimal protocol
appears to drive the system along a nucleation pathway.
This optimal protocol has a striking similarity to spontaneous
reaction paths in the absence of nonequilibrium driving (cf.,
Ref. [49]). Empirically, the optimal protocol appears to drive
the system along a minimum free-energy path, which is the
most likely spontaneous reaction path [50]. Significant further
exploration is needed to make a precise formal connection
between minimum free-energy paths and optimal protocols.
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APPENDIX: GEOMETRIC MINIMUM ACTION METHOD

For a complex system, the metric tensor (4) cannot be
computed exactly, and we must rely on numerical simulations
to estimate its components. Calculating the tensor is compu-
tationally demanding, so we attempt to minimize expense by
iteratively relaxing a trial protocol toward the optimum. To
calculate optimal nonequilibrium protocols without explicit
knowledge of the metric, we employ a geometric minimum
action method [38,39]. These numerical techniques build on
the minimum action methods developed to study reaction
paths [51].

Our goal is to construct solutions to (7). To do so, we follow
closely the algorithm proposed in [38,39]. We first discretize
the protocol λ(t) on a grid t0 = 0, t1, . . . ,tk = T , where tj =
j�t , j = 0, . . . ,k, �t = T/k. Denoting the discretized path
by λi = λ(ti), we also discretize the first and second derivatives
along the path, using

λ̇(ti) ≈ λi+1 − λi−1

2�t
≡ Dλi , (A1)

λ̈(ti) ≈ λi+1 + λi−1 − 2λi

�t2
≡ D2λi . (A2)

We then update the positions of λi until they approximate the
solution to (7) as follows: Denoting by λ

(n)
i the k + 1 positions

of the control parameter in the N -dimensional space after n

iterations, we get the next update by solving the following
linear system of equations:

λ
(n+1)
i − λ

(n)
i

= �r
(
D2λ

(n+1)
i + 1

2 (ζ (n)
i )−1∂λζ

(n)
i : Dλ

(n)
i Dλ

(n)
i

)
for i = 1, . . . ,k (A3)

with λ0 and λk kept fixed and where ζ n
i = ζ (λ(n)

i ), and �r

is a parameter controlling the size of the update, which must
be kept small enough for numerical stability. We also ensure
constant spacing between points along the protocol using
a reparametrization scheme [50]. This procedure proceeds
iteratively until the minimum action path is reached. Note
that letting �t → 0 and �r → 0, (A3) amounts to solving (7)
via relaxation using

∂rλ = ∂2
t λ + 1

2ζ−1∂λζ : ∂tλ∂tλ + μ∂tλ (A4)

in which r plays the role of a relaxation time for the path,
and μ∂tλ is a Lagrange multiplier term that guarantees that
|∂tλ| is a constant. Equation (A3) treats the diffusion term ∂2

t λ

implicitly to avoid the Courant-Friedrichs-Lewy condition on
�r of an explicit scheme.

The implementation outlined above can easily be made
computationally efficient. Very little information is shared
between distinct points along the protocol. In fact, only at
the final stage of an iteration, when the protocol is updated, is
global information about the protocol needed. This means that
the metric can be estimated for each point along the protocol in
parallel, which dramatically increases the performance of the
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algorithm. Because of the noise when estimating the metric,
the algorithm will fluctuate around the minimum action path,

which can be addressed by averaging over the sampled paths
from the final iterations of the algorithm.
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