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Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model
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A general understanding of optimal control in nonequilibrium systems would illuminate the operational
principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out
of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized
susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest
achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly
solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived
analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order
to study optimal protocols for reversing the net magnetization.
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Introduction. At the nanoscale, biological systems operate
in a heterogeneous, fluctuating environment. Nevertheless, life
has been overwhelmingly successful at constructing machines
that are fast [1], accurate [2,3], and efficient [4]. The recent
development of techniques for nanoscale manipulation and
design [5–7], alongside theoretical advances in nonequilibrium
statistical mechanics [8], has given us a new set of tools
with which to probe the thermodynamics of small systems
operating out of equilibrium. With these tools we can uncover
the principles that have guided the evolution of molecular
machines and shed light on the design of optimal nanoscale
devices.

In the last several years, a geometric approach to
nonequilibrium thermodynamics [9–11] has been extended to
nanoscale systems [12–14]. To address the question of energy
efficiency in stochastic machines, we imagine exercising
control over a system by adjusting external parameters over
some finite amount of time. A typical control parameter might
be the location of a harmonic potential trapping an optical
bead or the magnitude of an applied magnetic field. An
optimal protocol is a prescription for changing the control
parameters as a function of time that minimizes the average
energy dissipated to the environment. In the linear response
regime, the space of control parameters is endowed with a
Riemannian metric. On this manifold, distance minimizing
geodesics are the minimum dissipation protocols.

While studying model systems helps us glean the general
principles of nonequilibrium control, theoretical analysis has
thus far been restricted to single-body systems with exactly
solvable dynamics [15–20] or in which the dynamics is not
incorporated [21,22]. For most systems of interest we cannot
compute the metric exactly. In this Rapid Communication,
we develop a general method to predict optimal protocols
from incomplete knowledge of the metric tensor, inspired by
techniques originally developed in computational geometry
[23,24].

We illustrate the practical significance of our method by
studying the example of the two-dimensional (2D) Ising
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FIG. 1. (Color online) Minimum dissipation, finite-time proto-
cols for reversing the magnetization of the 2D Ising model with
initial and final conditions below the critical temperature tC ≈ 2.269.
The outermost protocol is unconstrained, whereas the inner two
protocols have a constraint on the maximum temperature. We control
the external field h and the spin-spin coupling constant J as a function
of time. Initially, the protocols ramp up the external field followed
by a temperature increase as the field is turned off. Low dissipation
protocols circumscribe the critical region to avoid large spatial and
temporal correlations near the second-order phase transition. The
first-order phase transition (h = 0, t < tC) is shown as a dashed line
ending at the critical point.

model, a many-body system with nontrivial spatial and
temporal correlations. The Ising model is a cornerstone of
statistical mechanics that captures the essential physics of a
diverse set of systems including ferromagnets, liquid-vapor
phase transitions, and lipid membranes [25,26]. With this
example, we gain insight into the unexplored consequences
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of nonlinear dynamics and the presence of a phase transition
on optimal protocols. Control can be exercised by applying
an external field, but also by varying the spin-spin coupling,
as in heat assisted magnetic recording [27]. Applications
include magnetic information storage technologies that rely on
inverting the net magnetization of microscopic spin domains
as well as technologies for ultralow energy computation,
such as hybrid spintronics [28]. Low dissipation control of
seemingly simple, stochastic systems, such as spins on a
magnetic hard drive, has implications for the efficiency of
nanodevices already in wide use.

General framework and Ising model. We will outline a
general strategy for numerically computing optimal protocols.
As an illustrative example and proof of practical significance,
we will consider the problem of inverting the net magnetization
of the 2D Ising model using the spin-spin coupling and external
field as control parameters. The system is governed by the
standard Ising Hamiltonian,

H ({si},λ(t)) = h(t)
n∑

i=1

si + J (t)
∑
〈i,j〉

sisj , (1)

where 〈i,j 〉 denotes a sum over all nearest-neighbor pairs on
the lattice, and the control parameter λ(t) = (βh(t),βJ (t))
varies the coupling J and the external magnetic field h with
time. Controlling the strength of the spin-spin coupling can
also be implemented by varying the temperature.

If we drive at a finite rate, the system resists the changes in
the control parameters. In the linear regime, the friction ζ [13]
that the protocol encounters is

ζij (λ(t)) = β

∫ ∞

0
dτ 〈δXi(0)δXj (τ )〉λ(t), (2)

where Xi is the conjugate force to the control parameter λi

and δX = X − 〈X〉. When we control the field and coupling,
the conjugate forces are the net magnetization M and internal
energy E,

Xβh(t) =
n∑

i=1

si ≡ M, (3)

XβJ (t) =
∑
〈i,j〉

sisj ≡ E. (4)

Similar expressions for the friction (2) arise in Kirkwood’s
linear response formula [13,29] and also in the study of
effective diffusion constants under coarse graining [30].

Thermodynamic geometry. The friction matrix (2) is a
semi-Riemannian metric tensor—it is a symmetric, positive
semidefinite, bilinear form. This metric defines the distance
along a protocol λ,

L[λ(t)] =
∫

λ

√
λ̇iζij λ̇j , (5)

and the distance along an optimal protocol sets a lower bound
on the excess work exercised by the controller over the system
[13,31],

�t〈Wex〉 � L2. (6)

For any protocol, equality between the divergence �t〈Wex〉
and the squared thermodynamic length L2 is achieved when

FIG. 2. (Color online) (a) Caloric, (b) magnetocaloric, and (c)
magnetic friction coefficients of the 2D Ising model, as defined by
Eq. (2), plotted in the magnetic field (h), temperature T = 1/βJ

plane. Both relaxation times and static correlations diverge at the
critical point which gives rise to the cusp in each of these plots. The
friction coefficients are the matrix elements of a Riemannian metric
with the property that geodesics minimize the average excess work
that a protocol exercises over the system.
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the excess power is constant over the duration of the protocol.
As a result, the path of an optimal protocol does not depend
its duration [12,31].

Exact equations for the relaxation of M and E are not
known in general, so we must approximate the metric using
simulations. We discretize the parameter space and at each
point we compute the time correlation matrix for the conjugate
forces, (〈δXβh(0) δXβh(τ )〉 〈δXβh(0) δXβJ (τ )〉

〈δXβJ (0) δXβh(τ )〉 〈δXβJ (0) δXβJ (τ )〉

)
. (7)

The time correlation functions are estimated with Markov
chain Monte Carlo simulations on a 128 × 128 square lattice
of Ising spins with Glauber dynamics [32]. We compared
our results to a 256 × 256 system to ensure there were no
significant finite-size effects, aside from finite-size scaling.
Integrating the time correlation function (7) to infinite time
yields the friction coefficient ζij (2) at each point in the
parameter space. In practice, correlations decay exponentially
and the friction tensor can be accurately estimated, except very
near the critical point.

Once the metric is known on a subspace of
the parameter manifold, we recast the problem
of approximating geodesic distances in terms
of an eikonal equation, |∇T (t,h)| = 1/F (t,h),
a partial differential equation commonly used to study
wave propagation [23]. The field F is the instantaneous speed
of a wave front and T represents the arrival time of the wave.
In our case, F is the linearized Riemannian distance between
neighboring points λ0 and λ1,

d(λ0,λ1) =
√

1
2 (λ1 − λ0)T [ζ (λ0) + ζ (λ1)](λ1 − λ0).

We expect linearization to be robust so long as the discretiza-
tion is sufficiently fine. In the vicinity of the critical point, we
computed the friction tensor on a finer mesh.

We used the “fast marching method” [23] to find numerical
solutions to the eikonal equation. This algorithm approximates
continuous geodesic paths, as shown in Fig. 1, given discrete
knowledge of the distance between neighboring points [24].
A geodesic path in the parameter space travels backwards
along the gradient of T . After computing the arrival time field
T for geodesics initiated from some initial point λ0, we can
solve a first-order differential equation, to find a geodesic path
between λ0 and λ1. Given the metric, we can rapidly calculate
optimal protocols between any two points.

Ising metric. In Fig. 2 we plot each of the components
of the friction tensor. The caloric friction coefficient ζEE is
the time autocorrelation of the internal energy. At each point
in parameter space, this friction can be written as ζEE =
τEE〈(δE)2〉 = τEEkBt2C, the product of the heat capacity C

and an effective time scale for the relaxation of the energy.
Similarly, the cross correlation of the magnetization and
internal energy, the magnetocaloric friction ζME = ζEM =
τEMkBtMt , is proportional to the magnetocaloric coefficient
Mt , and the autocorrelation of the magnetization, the mag-
netic friction ζMM = τMMχ , is proportional to the magnetic
susceptibility χ .

�

�

�

FIG. 3. (Color online) The black arrows show tangents vectors
of geodesic paths passing through h = 0, t = 4.6, where the optimal
protocol plotted in Fig. 1 crosses the supercritical line. Optimal
protocols follow these geodesic flows. Starting below the critical
temperature, geodesics flow towards high field and low temperatures
before raising the temperature and subsequently reducing the field.
Contours show log Tr ζ.

Both static correlations and relaxation time scales diverge
near the critical point of the Ising model. These two effects
compound to produce a singularity of the metric where all
three components of friction tensor also diverge. The friction
coefficients decay according to characteristic power laws in
neighborhoods surrounding the critical point [33]. Correlations
are also large exactly at the first-order phase transition along
the line h = 0, t < tC. However, spontaneous magnetization
reversal is rarely observed in simulations under single spin-flip
dynamics. Below the critical temperature tC with h �= 0,
relaxation times are fast and fluctuations are negligible, which
results in small values for each component of the friction
tensor.

The geometry of the supercritical region is more intricate.
The caloric friction, Fig. 2(a), exhibits symmetric ridges that
correspond to maxima in the heat capacity and are reminiscent
of “Widom lines” in supercritical fluids [34]. Along these
ridges we observe large, slowly relaxing spin domains. The
magnetocaloric friction, Fig. 2(b), is antisymmetric about
h = 0 due to the antisymmetry in the net magnetization. The
magnetic friction, Fig. 2(c), is large for an extended region
above the critical temperature. At very high temperatures, all
the components of the metric are again small due to negligible
spin-spin couplings.

Optimal protocols. Protocols, as shown in Fig. 3, clearly
avoid the critical point by curving around this feature of the
phase diagram due to the high friction in this region. Passing
directly through the first-order phase transition, even in a
finite time, also has a high dissipation cost. Overcoming the
broken symmetry requires nucleation of a domain of opposite
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spin, which can then grow to reverse the net magnetization.
Nucleation can be accelerated by applying a large field, but
this results in a proportionally higher dissipation when the
spins reverse.

At low temperatures, excitations are small and local, which
leads to low friction (see the configurations in Fig. 1).
As a result, the protocols are weakly constrained below
the critical temperature. Similarly, in the high temperature
limit, the vanishing spatial and temporal correlations result
in low friction and weakly constrained protocols. Only at
intermediate temperatures does higher friction impose tight
constraints on the minimum dissipation paths.

The optimal protocols for reversing the magnetization are
plotted in Fig. 1. Counterintuitively, the magnetic field is first
applied in the direction of the spontaneous magnetization. Be-
cause the friction coefficients are small in the low temperature
region, aligning the spins at the outset minimizes the overall
contribution to the dissipation by dampening fluctuations as
the temperature of the system is brought above the critical
temperature. The direction of the field is then reversed, but
since the value of the magnetic friction coefficient is large
along the zero external field line, as shown in Fig. 2(c), crossing
between the positive and negative field must be performed
slowly. The protocol is symmetric about zero field due to
the underlying symmetry of the model, thus we reduce the
temperature and finally turn off the field.

Discussion. The optimal protocols depend on what we can
control. For instance, given spatial control of the external field,
the minimum dissipation protocol may involve flipping spins at

the boundary of a domain. High-dimensional parameter spaces
will require different approaches to calculating geodesics.
Analogous problems in transition state theory have been
addressed using the string method [35] and path sampling [36].

Nonequilibrium nanoscale machines need to be designed
for objectives beyond low dissipation. If speed is the objective,
the bound in Eq. (6) can be used to minimize the total duration
of the protocol, while keeping the average dissipation fixed.
Supercritical heat engines [37] and magnetic refrigerators [38]
could also be studied using the Ising model, but in these
cases the objective is to efficiently transfer energy around a
thermodynamic cycle. In such cases, we will have to include
additional constraints when seeking efficient control. There
may also be practical limits on the range of the control param-
eters. As an illustration, Fig. 1 shows minimum dissipation
protocols where the maximum temperature is constrained. The
optimal protocols we have predicted are weakly constrained
where the manifold is flat, affording tremendous flexibility to
the controller. Where the metric changes rapidly, protocols are
tightly constrained and external control must be precise.
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