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Metropolis Monte Carlo simulation is a powerful tool for studying
the equilibrium properties of matter. In complex condensed-phase
systems, however, it is difficult to design Monte Carlo moves with
high acceptance probabilities that also rapidly sample uncorrelated
configurations. Here, we introduce a new class of moves based on
nonequilibrium dynamics: Candidate configurations are generated
through a finite-time process in which a system is actively driven
out of equilibrium, and accepted with criteria that preserve the
equilibrium distribution. The acceptance rule is similar to the Me-
tropolis acceptance probability, but related to the nonequilibrium
work rather than the instantaneous energy difference. Ourmethod
is applicable to sampling from both a single thermodynamic state
or a mixture of thermodynamic states, and allows both coordinates
and thermodynamic parameters to be driven in nonequilibrium
proposals. Whereas generating finite-time switching trajectories
incurs an additional cost, driving some degrees of freedom while
allowing others to evolve naturally can lead to large enhancements
in acceptance probabilities, greatly reducing structural correlation
times. Using nonequilibrium driven processes vastly expands the
repertoire of useful Monte Carlo proposals in simulations of dense
solvated systems.

expanded ensembles ∣ Markov chain Monte Carlo ∣ Metropolis–Hastings ∣
molecular dynamics

In this paper, we describe a new technique for constructing effi-
cient Markov chain Monte Carlo (MCMC) (1) moves that both

have high acceptance rates and also allow rapid transit through
configuration space, greatly enhancing convergence rates in
simulations of dense solvated systems. The Metropolis Monte
Carlo (MC) (2, 3) sampling procedure is generalized by using
nonequilibrium processes to generate candidates for equilibrium
simulations. Within this framework, moves that are efficient for
an isolated part of a system but lead to near-universal rejection
in standard Monte Carlo simulations of dense mixtures can be
converted to nonequilibrium processes that generate candidates
with higher acceptance probabilities. In this new procedure, the
acceptance criteria is related to the nonequilibrium work, rather
than the potential energy difference used in traditional Monte
Carlo moves.

Since their introduction in the mid-twentieth century, MC
(2, 3) and molecular dynamics (MD) (4) simulations have become
favored tools for sampling from complex multidimensional distri-
butions, such as configurations of microscopic physical systems
in thermodynamic ensembles. However, these methods can pro-
duce highly correlated samples, leading to slow convergence of
estimated expectations. Whereas MD requires the use of small
timesteps for numerical stability and to approximate sampling
from the desired distribution, MC simulations can, in principle,
make use of nonlocal moves that accelerate mixing of the Markov
chain. Indeed, vast improvements in efficiency have been ob-
tained by applying cleverly constructed move sets that exploit
physical intuition about the system under study, such as cluster
moves in Potts and Ising model simulations (5, 6).

Designing efficient moves requires striking a balance between
rapid traversal of phase space and ensuring reasonable accep-
tance probabilities. For complex heterogeneous systems such
as solvated biomolecules, achieving this balance remains challen-
ging. Typically, efficient moves exploit physical insight into kine-
tically slow processes and energetically favorable configurations.
Often, the experimenter may possess physical insight about one
component in the system (e.g., a biomolecule) that permits the
design of moves that would be efficient in the absence of other
components (e.g., solvent), but encounter energetically unfavor-
able interactions in their presence, reducing acceptance rates to
levels where standard MC provides no benefit. As an illustrative
example, consider a bistable dimer—a pair of particles interact-
ing with a potential with minima in compact or extended config-
urations, separated by a high barrier (see Fig. 1). For simulations
of this system in a vacuum, a simple and effective standard MC
move is to instantaneously increase the interparticle distance
from a compact to extended configuration (or conversely, to de-
crease the distance from an extended to compact configuration).
When the dimer is immersed in a dense solvent, however, this
move is met with near-universal rejection because solvent mole-
cules overlap with proposed configurations.

One approach that can allow unperturbed degrees of freedom
to relax, and hence maintain a reasonable acceptance rate, is to
use a nonequilibrium process to generate candidate configura-
tions. Using the appropriate acceptance criterion for the final
configuration will preserve the equilibrium distribution. In the
case of the bistable dimer immersed in dense solvent, the exten-
sion (or contraction) may be carried out over a finite number of
increments interleaved with standard Metropolis Monte Carlo or
molecular dynamics steps that allow the solvent to reorganize to
avoid overlap with the dimer particles.

The basic idea of using nonequilibrium driven processes as
Monte Carlo moves has precedents in both the statistical (7, 8)
and chemical (9–12) literature. Among the latter, Athènes devel-
oped “work-bias Monte Carlo” to enhance acceptance rates in
grand canonical Monte Carlo simulations (9), Stern presented
a scheme to sample an equilibrium mixture of protonation states
at constant pH in explicit solvent (11) [although an inexact var-
iant was proposed earlier (10)], and Nilmeier et al. (12) proposed
the driving of a subset of degrees of freedom to enhance accep-
tance rates (using an approximate acceptance criterion). Non-
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equilibrium processes have also been used to generate configura-
tions for parallel tempering simulations (13–15).

Here, we unify these ideas and significantly extend the appli-
cation of nonequilibrium moves in physical simulations. We pre-
sent a theoretical framework, nonequilibrium candidate Monte
Carlo (NCMC), that is applicable to both single thermodynamic
states (e.g., NVT, NpT, μVT ensembles) as well as mixtures of
thermodynamic states [e.g., expanded ensemble (16, 17) simula-
tions]. Nonequilibrium proposals may drive a subset of degrees
of freedom, the thermodynamic parameters characterizing the
equilibrium distribution, or both, significantly expanding the re-
pertoire of Monte Carlo moves that lead to high acceptance and
efficient mixing in dense condensed-phase systems.

Equilibrium and Expanded Thermodynamic Ensembles
For physical systems in equilibrium, the probability of observing a
microstate is given by the Boltzmann distribution,

πλðxÞ ¼ Z−1
λ e−uλðxÞ; Zλ ¼

Z
Γ
dx e−uλðxÞ; [1]

where x ∈ Γ denotes a microstate of the system (which may in-
clude coordinates, momenta, and other dynamical variables, such
as simulation box dimensions), λ denotes a set of thermodynamic
parameters whose values define a thermodynamic state, and Zλ is
a normalizing constant known as the partition function.

The reduced potential uλðxÞ depends on the thermodynamic
ensemble under consideration (18). For instance, in an isother-
mal-isobaric (NpT) ensemble, the reduced potential will assume
the form,

uλðxÞ ¼ β½HðxÞ þ pV ðxÞ�; [2]

which depends on the Hamiltonian HðxÞ (which may include an
external biasing potential, and is presumed to be invariant under
momentum inversion) and the system volume V ðxÞ. In this en-
semble, the vector of controllable thermodynamic parameters
λ≡ fβ; H; pg includes the inverse temperature β, the Hamilto-
nianHðxÞ, and external pressure p. Other thermodynamic param-

eters and their conjugate variables can be included or excluded to
generate alternative physical (or unphysical) ensembles.

To allow sampling from multiple thermodynamic states within
a single simulation, we also define an expanded ensemble (16,
17), which specifies a joint distribution for ðx; λÞ in a weighted
mixture of thermodynamic states,

πðx; λÞ ¼ ZλπλðxÞωλ

∑
ν∈G

R
Γ dy ZνπνðyÞων

; [3]

where ωλ > 0 specifies an externally imposed weight for state λ.
Here, λ ∈ G may assume values in a discrete or continuous space
G. If the set G consists of a single value of λ, a single thermody-
namic state is sampled, and πðx; λÞ ¼ πλðxÞ. These thermody-
namic states may correspond to a variety of different states of
interest, such as temperatures in a simulated tempering simula-
tion (19), alchemical states in a simulated scaling simulation (20),
or protonation states in a constant-pH simulation (21).

Nonequilibrium Candidate Monte Carlo
We first describe the general form of NCMC. At the start of an
iteration, the current sample in the Markov chain, ðxðnÞ; λðnÞÞ,
which is assumed to be drawn from πðx; λÞ, is used to initialize
a trajectory, ðx0; λ0Þ ¼ ðxðnÞ; λðnÞÞ. A candidate configuration
ðxT; λTÞ is then proposed through a nonequilibrium process in
which a set of degrees of freedom and/or thermodynamic param-
eters may be driven according to some protocol (22) selected with
a probability dependent only on ðx0; λ0Þ. Even if we only wish to
sample from a single thermodynamic state λ, we may use a pro-
tocol that transiently drives the thermodynamic parameters away
from λ and back again (as in ref. 14). Finally, an acceptance prob-
ability is computed and used to decide whether the next sample in
the Markov chain, ðxðnþ1Þ; λðnþ1ÞÞ, is the candidate, ðxT; λTÞ, or the
momentum reversal of the initial sample, ð~xðnÞ; λðnÞÞ.

An NCMC move begins by selecting a protocol Λ from a set of
possible protocols with probability PðΛjx0; λ0Þ, such that there ex-
ists a reverse protocol labeled as ~Λ (to be defined momentarily)
with Pð ~Λj~xT; λTÞ > 0. A protocol Λ specifies both a series of T
perturbation kernels αtðx; yÞ and propagation kernels Ktðx; yÞ,
arranged in an alternating pattern such that Λ≡ fα1; K1; α2; K2;
…; αT; KTg. Both αtðx; yÞ and Ktðx; yÞ are conditional probabil-
ities of y ∈ Γ given any x ∈ Γ, and must satisfy the requirement
that if pðx; yÞ > 0, then pðy; xÞ > 0, for p substituted by αt and Kt.

Each perturbation kernel αt drives some or all of the degrees
of freedom x in a stochastic or deterministic way (e.g., by driving
a torsion angle, a distance between two atoms, or the volume of
the simulation cell). Similarly, each propagation kernel Kt propa-
gates some or all of the coordinates of the system at fixed λt
according to some form of MCMC or MD [e.g., Metropolis
Monte Carlo (2, 3), velocity Verlet (23) deterministic dynamics,
or overdamped Langevin stochastic dynamics (24, 25)] that may
also depend on the time index t. Interleaving perturbation and
propagation allows for energetically unfavorable interactions
introduced by perturbation to be relaxed during propagation,
potentially increasing acceptance rates relative to the instanta-
neous perturbations of standard Metropolis Monte Carlo.

The procedure by which a trajectory X ≡ ðx0; x1;…; xTÞ is gen-
erated from an initial microstate x0 according to a protocol Λ can
be illustrated by the scheme,

x0 ��!α1 x�1 ��!K1 x1 ��!⋯ ��! xT−1 ��!αT x�T ��!KT xT: [4]

Application of the perturbation αt to xt−1 generates a perturbed
configuration x�t , which is then propagated by the kernel Kt to
obtain xt.

The reverse protocol ~Λ≡ fKT; αT;…; K0; α0g reverses the or-
der in which the perturbation and propagation steps are applied,

Fig. 1. Bistable dimer potential and instantaneous MC moves in WCA fluid.
An extension move increases the dimer extension by Δr ¼ þr0, whereas a
compaction move decreases the dimer extension by Δr ¼ −r0. Both move
types meet with near-universal rejection when implemented as instanta-
neous MC moves in a dense WCA fluid. Note that the lower panel is only
a cartoon—the actual described simulation is of a 3D system.
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generating the time-reversed trajectory ~X ≡ f~xT;…; ~x0g, where ~x
denotes x with inverted momenta,

~xT ��!KT
~x�T ��!αT ~xT−1 ��!⋯ ��! ~x1 ��!K1

~x�1 ��!α1 ~x0: [5]

The next step in NCMC is to accept or reject ðxT; λTÞ as the
next sample in the chain. To ensure that the stationary distribu-
tion πðx; λÞ is preserved, we enforce a strict pathwise form of de-
tailed balance*,

AðX jΛÞΠðX jx0; ΛÞPðΛjx0; λ0Þπðx0; λ0Þ
¼ Að ~X j ~ΛÞΠð ~X j~xT; ~ΛÞPð ~Λj~xT; λTÞπð~xT; λTÞ: [6]

The quantity AðX jΛÞ is the NCMC acceptance probability,
whereasΠðX jx0; ΛÞ andΠð ~X j~xT; ~ΛÞ denote the probability of gen-
erating trajectory X from initial configuration x0 using protocolΛ,
or ~X from final configuration ~xT with protocol ~Λ, respectively,

ΠðX jx0; ΛÞ ¼
Y

1≤t≤T

αtðxt−1; x�t ÞKtðx�t ; xtÞ [7]

Πð ~X j~xT; ~ΛÞ ¼
Y

T≥t≥1
αtð~x�t ; ~xt−1ÞKtð~xt; ~x�t Þ: [8]

Summation of Eq. 6 over all trajectories starting with x0 and
ending with xT recovers the standard detailed balance condition
(see Appendix for proof).

We define the ratio of proposal kernels as

αð ~X j ~ΛÞ
αðX jΛÞ≡

YT
t¼1

αtð~x�t ; ~xt−1Þ
αtðxt−1; x�t Þ

; [9]

and the ratio of propagation kernels as the exponentiated differ-
ence in forward and backward conditional path actions as

e−ΔSðX jΛÞ ≡
YT
t¼1

Ktð~xt; ~x�t Þ
Ktðx�t ; xtÞ

: [10]

Using the above expressions and the momentum invariance
property πðx; λÞ ¼ πð~x; λÞ, we may write the ratio of acceptance
probabilities as

AðX jΛÞ
Að ~X j ~ΛÞ ¼

πð~xT; λTÞ
πðx0; λ0Þ

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

ΠðX j~xT; ~ΛÞ
ΠðX jx0; ΛÞ

¼ πðxT; λTÞ
πðx0; λ0Þ

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

YT
t¼1

αtð~x�t; ~xt−1Þ
αtðxt−1; x�t Þ

Ktð~xt; ~x�t Þ
Ktðx�t; xtÞ

≡ ωT

ω0

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

αð ~X j ~ΛÞ
αðX jΛÞ e

−ΔSðX jΛÞ−ΔuðX jΛÞ; [11]

where ΔuðX jΛÞ≡ uTðxTÞ − u0ðx0Þ is the energy difference. Eq. 11
is the main result of this paper, and is highly general with regard
to both the choice of protocol for perturbation and propagation.
In subsequent sections, we discuss specific choices for these pro-
tocols that lead to particularly simple acceptance criteria.

Many choices of acceptance probabilities AðX jΛÞ that satisfy
Eq. 11 are possible, including the well-known Metropolis–
Hastings criterion (2, 3)

AðX jΛÞ ¼ min
�
1;
ωT

ω0

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

αð ~X j ~ΛÞ
αðX jΛÞ e

−ΔSðX jΛÞ−ΔuðX jΛÞ
�
:

[12]

After generating ðxT; λTÞ and evaluating AðX jΛÞ, we generate a
uniform random variate U. If AðX jΛÞ > U, then the candidate
becomes the next value in the chain, ðxðnþ1Þ; λðnþ1ÞÞ ¼ ðxT; λTÞ.
Otherwise, it is rejected, we perform a momentum flip, and
the next value becomes ðxðnþ1Þ; λðnþ1ÞÞ ¼ ð~x0; λ0Þ. Alternately, we
may perform a momentum flip upon acceptance, ðxðnþ1Þ; λðnþ1ÞÞ ¼
ð~xT; λTÞ and preserve the momentum upon rejection, ðxðnþ1Þ;
λðnþ1ÞÞ ¼ ðx0; λ0Þ. We cannot, however, ignore the momentum
flip completely; as explained in Appendix, this flip is necessary
to preserve the equilibrium distribution.

We note that NCMC need not be used exclusively to sample
from πðx; λÞ, but can be mixed with other MCMC moves or with
MD (1). For example, one may reinitialize velocities from the
Maxwell-Boltzmann distribution after each NCMC step; this is
a Gibbs sampling MCMC move using the marginal distribution
for velocities.

Perturbation Kernels
A large variety of choices are available for the perturbation
kernels αtðx; yÞ. Through judicious selection of these kernels, a
practitioner can design nonequilibrium proposals that carry some
component of the system from one high-probability region to
another with high acceptance rates. We briefly describe a few
possibilities.

Stochastically Driven Degrees of Freedom. Suppose we wish to drive
a torsion angle ϕ (an angle subtended by four bonded atoms)
stochastically by rotating it to a new torsion angle ϕ0 (holding an-
gles and bonds fixed) according to some probability, such as the
von Mises circular distribution centered on ϕ,

ηðϕ0jϕÞ ¼ ½2πI0ðκÞ�−1eκ cosðϕ0−ϕÞ; [13]

with I0ðκÞ denoting the modified Bessel function of order zero
and κ > 0 taking the role of a dimensionless force constant.
Because the stochastic perturbation is made in a non-Cartesian
coordinate, a Jacobian JðϕÞ must be included to compute αðx; yÞ
in Cartesian coordinates, resulting in the ratio,

αtð~y; ~xÞ
αtðx; yÞ

¼ ηðϕjϕ0ÞJðϕÞ
ηðϕ0jϕÞJðϕ0Þ ¼ 1; [14]

where Jðϕ0Þ ¼ JðϕÞ ¼ 1 because the transformation (a rotation
about a bond vector) preserves the Cartesian phase space volume.

Deterministically Driven Degrees of Freedom. Instead of perturbing
the torsion angle stochastically, we can deterministically drive it
in small, fixed increments Δϕ. In this case, we effectively define
an invertible map M that takes x → y, such that y ¼ Mx differs
from x only in the rotation of the specified torsion ϕ by Δϕ.
To implement this, we may choose a perturbation Δϕ from a
distribution where �Δϕ have equal probability, and drive ϕðxÞ
from its current value ϕ0 to a final value ϕT ¼ ϕ0 þ Δϕ over T
steps in equal increments, such that ϕðxtÞ is constrained to
ϕt ≡ ð1 − t∕TÞϕ0 þ ðt∕TÞϕT . In this case, αtðx; yÞ ¼ δðy −MxÞ
JðxÞ, where the Jacobian JðxÞ represents the factor by which
Cartesian phase space is compressed on the application of the
map M, which is again unity for rotation about a torsion angle
by Δϕ, and, due to the invertibility of the map, the ratio
αtð~y; ~xÞ∕αtðx; yÞ ¼ 1.

Simulation Box Scaling. Another possible deterministic perturba-
tion kernel is simulation box scaling. A barostat can be implemen-
ted by proposing propagation kernels that scale the molecular

*The described pathwise detailed balance condition is closely related to “super-detailed
balance” (e.g., ref. 26), but also accounts for momentum reversal to extend its definition
to include molecular dynamics integrators.

Nilmeier et al. PNAS ∣ November 8, 2011 ∣ vol. 108 ∣ no. 45 ∣ E1011

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

CH
EM

IS
TR

Y
PN

A
S
PL

U
S



centers and box geometry by a factor s ¼ ½ðV ðxÞ þ ΔV Þ∕V ðxÞ�1∕3
with ΔV chosen uniformly from ½V − ΔV 0; V þ ΔV 0� applied as
a factor of s1∕T over the course of T steps. In this case, the per-
turbation kernel αtðx; yÞ is a delta function that compresses or
expands the molecular centers and box geometry. Because the
Jacobian is the ratio of infinitesimal volumes upon scaling, the
ratio of perturbation kernels is αð ~X j ~ΛÞ∕αðX jΛÞ ¼ s3N , where N
denotes the number of molecular centers.

Thermodynamic Perturbation. In many driven nonequilibrium
processes, there is no direct perturbation to the coordinates, such
that αtðx; yÞ ¼ δðx − yÞ and the ratio αð ~X j ~ΛÞ∕αðX jΛÞ ¼ 1. Instead,
only the thermodynamic parameters λ are varied in time, carrying
the system out of equilibrium through action of the Kt propaga-
tion kernels. We recover Neal’s method (7) if the reduced poten-
tial ut is a simple linear interpolation such that utðxÞ ¼
ð1 − t∕TÞu0ðxÞ þ ðt∕TÞuTðxÞ, the probability of choosing protocol
Λ is symmetric with ~Λ, and MC (2, 3) is used for the propagation
kernel Kt.

Propagation Kernels
The choice of propagation kernels available is also very broad. If
strong driving is performed in selection of α, one may elect to
choose a time-independent propagation kernel Ktðx; yÞ≡ Kðx; yÞ
that samples from a stationary distribution πðxÞ of interest.
Alternatively, a strongly time-dependent Kt could be selected
to transiently drive the system out of equilibrium, or from the
equilibrium distribution at one thermodynamic state to another.
Some possible choices are described below.

Reversible Markov Chain Monte Carlo.One may propagate some or
all of a system’s degrees of freedom (e.g., those not affected
by the perturbation kernel αt) by a method that satisfies detailed
balance in πt,

πtðxÞKtðx; yÞ ¼ πtð~yÞKtð~y; ~xÞ; [15]

where πt xð Þ≡ Z−1
t e−utðxÞ for a specified utðxÞ. Many MCMCmeth-

ods (1), including Metropolis (2, 3) and various hybrid Monte
Carlo (HMC) algorithms that combine discrete-timestep integra-
tors with Monte Carlo acceptance/rejection steps (27, 28), obey
detailed balance and are commonly used for the simulation of
physical systems.

By analogy with Crooks (29), we define a work w and heat q for
the nonequilibrium driven process,

wðX jΛÞ ¼ ∑
T

t¼1

½utðx�t Þ − ut−1ðxt−1Þ� [16]

qðX jΛÞ ¼ ∑
T

t¼1

½utðxtÞ − utðx�t Þ�; [17]

such that wðX jΛÞ þ qðX jΛÞ ¼ ΔuðX jΛÞ, a restatement of the first
law of thermodynamics.

The conditional path action difference can then be written in
terms of the heat of the process, qðX jΛÞ,

ΔSðX jΛÞ ¼ − ln
YT
t¼1

πtðx�t Þ
πtðxtÞ

¼ −qðX jΛÞ; [18]

leading to an acceptance probability similar to standard MC, ex-
cept that the work, wðX jΛÞ, replaces the instantaneous potential
energy difference,

AðX jΛÞ
Að ~X j ~ΛÞ ¼

ωT

ω0

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

αð ~X j ~ΛÞ
αðX jΛÞ e

−wðX jΛÞ: [19]

Deterministic Dynamics.When an isolated system is propagated by
a symplectic integrator—a reversible, deterministic integrator
that preserves phase space volume—the propagation kernels fol-
low Ktðx; yÞ ¼ Ktð~y; ~xÞ. Hence, ΔSðX jΛÞ ¼ 0 and the acceptance
ratio is,

AðX jΛÞ
Að ~X j ~ΛÞ ¼

ωT

ω0

Pð ~Λj~xT; λTÞ
PðΛjx0; λ0Þ

αð ~X j ~ΛÞ
αðX jΛÞ e

−ΔuðX jΛÞ; [20]

where ΔuðX jΛÞ≡ uTðxTÞ − u0ðx0Þ is the energy difference. The
equivalence of the work and energy difference for volume-preser-
ving integrators was previously recognized in the context of
fluctuation theorem calculations (30, 31).

Symplectic integrators include velocity Verlet (23). These in-
tegrators are also symplectic when utilizing constraints through
the application of algorithms such as RATTLE (32), provided
that the constraints are iterated to convergence each time-
step (33).

Stochastic Dynamics. Stochastic integrators such as velocity Verlet
discretizations of Langevin dynamics (34, 35) sample a modified
distribution that differs from the desired equilibrium distribution
πt in a timestep-dependent manner (36). Whereas this modified
distribution may be difficult or impossible to compute to recover
equilibrium properties by reweighting, computation of the rela-
tive action ΔSðX jΛÞ is relatively straightforward, and the NCMC
acceptance criteria ensures that the NCMC-sampled configura-
tions are distributed according to the desired equilibrium ensem-
ble†. As examples, we compute ΔSðX jΛÞ for the overdamped
Langevin (Brownian) dynamics integrator of Ermak and Yeh
(24, 25) and the Brünger–Brooks–Karplus (BBK) Langevin inte-
grator (38–40) in Appendix.

Illustrative Application: Bistable Dimer in a WCA Fluid
To demonstrate NCMC, we ran simulations of a bistable dimer
(adapted from section 1.3.2.4 of ref. 36) in vacuum as well as
a dense fluid. The dimer consists of a pair of “bonded” particles
interacting via a double-well potential, with minima at r ¼ r0
(compact) and r ¼ 2r0 (extended), and a 5kBT barrier (see Fig. 1).
In the solvated simulations, the dimer was immersed in a dense
bath (reduced density ρσ3 ¼ 0.96) of particles that interact with
the bonded particles and each other via the Weeks–Chandler–
Andersen (WCA) soft repulsive potential (41). Each simulation
“iteration” consisted of velocity reassignment from the Maxwell–
Boltzmann distribution, 500 steps of generalized hybrid Monte
Carlo (GHMC) dynamics (1, 28, 36, 37) (essentially, a Metropo-
lis-corrected form of Langevin dynamics, henceforth referred to
here as MD), optionally followed by either an instantaneous MC
move or an NCMC move.

The rate at which effectively uncorrelated samples are gener-
ated can be quantified in terms of the correlation time τ for the
dimer extension rðtÞ (shown in Fig. 2). This time represents the
asymptotic decay time constant for the correlation function
CðtÞ ¼ hrð0ÞrðtÞi, which will behave like

CðtÞ ¼ C∞ þ ðC0 − C∞Þe−t∕τ [21]

for large t, where C0 ¼ hr2i and C∞ ¼ hri2. The correlation time
is related to the statistical inefficiency, g ¼ 1þ 2τ, a factor that
describes the number of iterations necessary to generate an effec-
tively uncorrelated sample (42).

For the MD simulation in vacuum (Fig. 2, top trace), we
observe slow hopping between compact and extended configura-

†Alternatives to using NCMC to correct stochastic integration include introducing a
Metropolization correction after each step, as in the generalized hybrid Monte Carlo
(GHMC) integrator we use in the example (1, 28, 36, 37).
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tions with a correlation time τ ¼ 59.2 iterations, resulting in slow
convergence of the histogram. Introducing instantaneous MC
dimer extension/contraction moves that modify the dimer exten-
sion byΔr ¼ �r0 reduces the correlation time to τ ≈ 0.0, such that
an uncorrelated configuration is generated after each iteration of
500 MD steps and one instantaneous MC step (Fig. 2, second
trace from top).

When the dimer is immersed in a dense fluid ofWCA particles,
however, iterations consisting of 500 MD steps alone result in
extremely slow barrier crossings, requiring g ≈ 600 iterations to
produce an uncorrelated sample (Fig. 2, middle trace). Unlike in
vacuum, the introduction of instantaneous MC moves does not
significantly reduce the correlation time τ (Fig. 2, second trace
from bottom). However, performing these same dimer expansion
and contraction moves over 2,048-step NCMC moves (Fig. 2,

bottom trace) allows the system to rapidly mix between both com-
pact and extended states with a correlation time of τ ¼ 4.0 itera-
tions. Whereas each iteration requires a fivefold increase in
computational effort (500 MD steps + 2,048 NCMC switching
steps ¼ 2;548 force evaluations, versus 500 force evaluations for
MD alone), a 67-fold reduction in correlation time is achieved,
resulting in a remarkable order-of-magnitude gain in overall
efficiency.

The length of the NCMC switching process is a free parameter
that may be tuned to further improve efficiency. Toward this end,
we estimated the acceptance probability of the extension/contrac-
tion moves in dense solvent as a function of switching length
(Fig. 3). Whereas instantaneous MC proposals of �r0 are only
accepted with probability ≈10−27 (the error is this quantity is
likely underestimated due to its extremity), dividing the move into
smaller steps boosts the acceptance rate to a level useful in con-
densed-phase simulation. If the move is divided into a small num-
ber of steps (1–8), there is little to no increase in acceptance rate,
but for an intermediate number of steps (16–1,024), there is a
superlinear boost in the acceptance probability relative to the
length of the switching process. The acceptance probability finally
reaches useful levels around 2,000 steps, achieving an acceptance
rate of 12% using nonequilibrium proposal trajectories of 2,048
steps, or 38% for 8,192 steps.

In general, there is no direct relationship between acceptance
probability and efficiency. Under certain assumptions relevant
to the bistable dimer, however, it is possible to link the NCMC
acceptance probability to τeff , an indirect estimate of the correla-
tion time,

τeff ¼ τMD

�
τNCMC

τMD þ τNCMC

�
; [22]

where τMD and τNCMC are correlation times for iterations con-
sisting solely of MD or NCMC moves, respectively. The latter
correlation time may be estimated from the average acceptance
probability γ by τNCMC ≈ −1∕ lnð1 − 2γÞ (see Appendix for deri-
vation).

As shown in Fig. 4, the effective correlation time τeff is only
diminished when the NCMC acceptance probability is large
enough such that τNCMC ≈ τMD, which occurs when γ ≥ 0.13%
(about 256 switching steps or more). For shorter switching times,
even though the acceptance probability is high relative to instan-
taneous MC, it is still too small to significantly reduce τeff .

When comparing efficiency, we are most interested in the rate
of generating uncorrelated configurations for a given amount of
computational effort. Relative to MD alone, this rate is described
by the efficiency gain,

Fig. 2. Trajectories of WCA dimer system in vacuum and solvent. (Left) The
dimer extension r as a function of simulation iteration. The dotted horizontal
line denotes division between compact and extended configurations. The
quantity τ printed above each plot indicates the estimated integrated auto-
correlation time for the dimer extension r. (Right) Histogram accumulated
over trajectory (black), with true equilibrium distribution (red). Plot titles
denote whether simulation was run in vacuum (vacuum) or dense WCA fluid
(solvent), and whether the simulation utilized only 500 GHMC steps per itera-
tion (MD) or included instantaneous MC (MC) or 2,048-step NCMC moves
(NCMC) following each iteration.
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Fig. 3. Acceptance probabilities of NCMC proposals. (Top) Acceptance probability of NCMC proposals as a function of length of nonequilibrium proposal
trajectory (black dots), compared with instantaneous MC proposal (red line). (Inset) Enlarged region with acceptance probability shown on linear scale.
Estimated 95% confidence intervals are shown as vertical lines.
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E≡ gMDTMD

gNCMCðTMD þ TNCMCÞ
: [23]

Here, TMD ¼ 500 steps per iteration, and TNCMC is again varied
from 1–8,192 steps. The results are shown in the bottom panel of
Fig. 4. Surprisingly, there is actually a slight loss in efficiency
at short switching times—dropping to a minimum of 86.9%
the efficiency of MD alone at 128 steps—followed by a rapid gain
in efficiency, plateauing at an efficiency gain of approximately
13× the efficiency of MD alone for 2,048–4,096-step NCMC pro-
posals. (A similar plateau behavior is observed in the modified
parallel tempering protocol of ref. 15.) After this point, longer
switching times do not achieve as high of an efficiency gain; even
though the acceptance rate continues to increase as the number
of NCMC switching steps is doubled again to 8,192 steps, the
reduction in correlation time is not sufficient to offset the addi-
tional cost of these moves.

Epilogue
We have described a procedure—nonequilibrium candidate
Monte Carlo (NCMC)—by which nonequilibrium proposals can
be used within MCMC simulations to enhance acceptance rates.
In our illustration, we have demonstrated how its use can lead
to large improvements in statistical efficiency—the rate at which
uncorrelated samples are generated for a fixed amount of com-
putational effort. In other applications, whether similarly large
efficiency gains are achieved will depend on the precise nature

of the system under study and the nonequilibrium proposals
introduced. The most straightforward approach—borrowing
Metropolis Monte Carlo proposals that are reasonable for one
component of the system in isolation, and converting them to
nonequilibrium proposals—is likely to be a fruitful avenue for
generating efficient schemes, as was demonstrated here for a sim-
ple system.

More generally, the problem of selecting efficient nonequili-
brium proposals is similar to the problem of choosing good reac-
tion coordinates, in that it is desirable to drive the system along
(possibly complex) slow collective coordinates where orthogonal
degrees of freedom relax quickly. The search for such collective
coordinates is a topic of active research (43–49). Given an initial
nonequilibrium protocol, the issue of optimizing such a protocol
to minimize dissipation (and maximize acceptance) is also a topic
of active study, led by forays into the world of single-molecule
measurement (50–52). Recent work has also suggested that esti-
mating the thermodynamic metric tensor along the nonequili-
brium parameter switching path (53–56), could prove useful in
adaptively optimizing the switching protocol (57).

We note that switching trajectories contain potentially useful
information. Indeed, several methods (56, 58, 59) have recently
been developed to estimate equilibrium properties from nonequi-
librium samples through the application of statistical estimator
theory to nonequilibrium fluctuation theorems (30, 60, 61); these
are particularly relevant to switching between multiple thermo-
dynamic states. Though the development of efficient estimators
that utilize both nonequilibrium switching trials and sampled
equilibrium data generated in NCMC simulations remains an
open challenge, it is at least straightforward to incorporate infor-
mation from rejected NCMC proposals in the estimation of equi-
librium averages (26, 62).

Materials and Methods
The dimer system considered here consists of two particles that interact via a
double-well bonded potential in the interatomic distance r,

UbondðrÞ ¼ h
�
1 −

ðr − r0 − sÞ2
s2

�
2

; [24]
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Fig. 4. Statistical efficiency gain of NCMC proposals relative to instantaneousMC proposals. (Upper) Effective correlation time τeff, in iterations, forMD+NCMC
(black dots) compared toMD alone (red line). (Lower) Relative statistical efficiency of MD+NCMC, in terms of number of uncorrelated configurations generated
for a fixed amount of computational effort, for MD+NCMC (black dots) relative to MD alone (red line).

Fig. 5. Umbrella sampling simulation of the dimer in WCA solvent. (Left)
The dimer extension r as a function of simulation iteration. (Right) The
histogram accumulated over the trajectory, with the observed histogram
in black and the reweighted histogram (corrected for the applied umbrella
bias potential) in red.
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with h ¼ 5kBT , r0 ¼ rWCA, and s ¼ rWCA∕2, where rWCA ≡ 21∕6σ. Simulations
denoted as “vacuum” contain only these two particles, whereas simulations
denoted as “solvated” also interact with a dense bath of particles via the
WCA nonbonded potential (41),

UWCAðrÞ ¼

8><
>: 4ϵ

��
σ
r

�
12

−
�

σ
r

�
6
�
þ ϵ; r < rWCA

0 r ≥ rWCA

; [25]

with mass m ¼ 39.9 amu, σ ¼ 3.4 Å, and ϵ ¼ 120 kBT . The nonbonded WCA
interaction is excluded between the two bonded particles. The solvated
system contains a total of 216 WCA particles at a reduced density of
ρσ3 ¼ 0.96. For all simulations, the reduced temperature is kBT∕ϵ ¼ 0.824.
A custom Python code making use of the graphics processing unit (GPU)-
accelerated OpenMM package (63–65) and the PyOpenMM Python wrapper
(66) was used to conduct the simulations. All scripts are available for down-
load from http://simtk.org/home/ncmc.

To ensure that observed differences were not due to changes in the sta-
tionary distribution of the integrator, we used GHMC (1, 28, 36, 37) for all our
simulations. GHMC is based on a velocity Verlet discretization (23) of Lange-
vin dynamics—the two are equivalent in the limit of small timesteps—but
includes an acceptance/rejection step to correct for errors introduced by
finite timesteps so that the stationary distribution is the exact equilibrium
distribution. We used a timestep of 0.002τ, where τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2m∕ϵ

p
, and the colli-

sion rate was set to τ−1. With this timestep, the acceptance probability
is 99.929� 0.001%; the resulting dynamics closely approximates Langevin
dynamics.

In simulations employing instantaneous Monte Carlo moves, a perturba-
tion Δr to the interatomic distance r of the dimer was chosen according to

Δr ¼
8<
:

þr0 if r < 1.5r0
−r0 if 1.5r0 ≤ r ≤ 3r0
0 otherwise

: [26]

The dimer was contracted or expanded about the bondmidpoint to generate
a new configuration xnew with dimer extension rnew from the old configura-
tion xold with dimer extension rold, and the move accepted or rejected with
the Metropolis–Hastings criterion (3),

AðxnewjxoldÞ ¼ minf1; e−β½UðxnewÞ−UðxoldÞ�Jrðxold; xnewÞg; [27]

where the Jacobian ratio term Jrðxold; xnewÞ ¼ ðrnew∕roldÞ2 accounts for the
expansion and contraction of phase space due to the Monte Carlo proposals.

For simulations employing T -step NCMC moves, proposals were made by
selecting a new velocity vector from the Maxwell–Boltzmann distribution,
integrating T steps of velocity Verlet dynamics (23) for all bath atoms as
the dimer extension was driven from rold to rnew in equal steps of size
Δr∕T , and accepting or rejecting based on the modified Metropolis criteria
for symplectic integrators (Eqs. 12–20),

AðXÞ ¼ minf1; e−β½HðxT Þ−Hðx0Þ�Jrðx0; xTÞg: [28]

The Jacobian ratio is also ðrnew∕roldÞ2. This scheme corresponds to a choice for
the perturbation kernel of

αtðx; yÞ ¼
�
rðyÞ
rðxÞ

�
2

δð½rðyÞ − rðxÞ� − ½Δr∕T�Þ; [29]

where rðxÞ denotes the dimer separation of configuration x. The propagation
kernel Ktðx; yÞ corresponds to velocity Verlet dynamics where the dimer
atoms are held fixed in space. The final configuration after the MC or NCMC
rejection procedure was stored and plotted to generate Fig. 2.

The mean acceptance probabilities for each switching time τ can be esti-
mated via the sample mean

hAiτ ≈
1

N∑
N

n¼1

AðXnÞ: [30]

For numerical stability, logarithms of AðXnÞwere stored, as an ≡ lnAðXnÞ. We
then estimated lnhAiτ (shown in Fig. 4) as

lnhAiτ ≈ − lnN þ ln bþ∑
N

n¼1

ean−b; [31]

where b≡maxn an.
Integrated autocorrelation times were estimated using the rapid scheme

described in section 5.2 of ref. 42.
The acceptance probabilities plotted in Fig. 4 were estimated from a

trajectory consisting of 10,000 iterations of 2,048-step NCMC, with 500 steps
of GHMC dynamics in between each NCMC trial, to ensure equilibrium sam-
pling. Prior to each 2,048-step NCMC iteration, a velocity from the Maxwell–
Boltzmann distribution was selected, and NCMC trial moves with varying
switching times were conducted solely to accumulate statistics. The statistical
error in the estimate of lnhAiτ and the computed relative efficiency over in-
stantaneous Monte Carlo was estimated by 1,000 bootstrap trials, in which
the dataset of 10,000 work samples was resampled with replacement in each
bootstrap trial and 95% confidence intervals computed from the distribution
over bootstrap replicates.

The reference distribution for the interparticle distribution PðrÞ plotted
in red on the right side of Fig. 2 was computed analytically for the vacuum
system,

PvacðrÞ ∝ 4πr2e−βUbondðrÞ: [32]

For the solvated system, this distribution was estimated from an umbrella
sampling simulation (Fig. 5) employing a modified bonded potential in-
tended to remove the barrier in between compact and extended states,

UumbrellaðrÞ ¼ kBT ln r2 þ θðrmin − rÞðK∕2Þ½r − rmin�2
þ θðr − rmaxÞðK∕2Þ½r − rmax�2; [33]

where rmin ¼ r0, rmax ¼ 2.05r0, and K ¼ kBT∕η2, with η ¼ 0.3 Å, and θðrÞ is the
Heaviside function that assumes a value of unity for r ≥ 0 and zero otherwise.
The true solvated interparticle distribution pðrÞ was estimated by reweight-
ing the data produced from this simulation, using the relationship

PsolðrÞ ∝ ∑
N

n¼1
δðr − rnÞe−β½UbondðrnÞ−UumbrellaðrnÞ�

∑
N

n¼1
e−β½UbondðrnÞ−UumbrellaðrnÞ� ; [34]

where rn denotes the bond separation for sample n, and a finite-width his-
togram bin was used instead of the delta function δðrÞ.

Appendix
Proof that NCMC Preserves the Equilibrium Distribution. Following
the proof for GHMC in ref. 36, here we show that NCMC pre-
serves the equilibrium distribution. The expected acceptance rate
for NCMC moves initiated from ðx; λÞ is

αðx; λÞ≡
Z

dΛ
Z

dXρðX; Λjx; λÞAðX jΛÞ: [35]

Suppose that we have a variate ðxðnÞ; λðnÞÞ drawn from the equi-
librium distribution πðx; λÞ. The probability density of the next
value in the chain, pðxðnþ1Þ; λðnþ1ÞÞ, has contributions from two
scenarios: when the candidate variate is rejected and when it
is accepted. The contribution from rejecting the candidate and
flipping the momentum such that ðxðnþ1Þ; λðnþ1ÞÞ ¼ ð~xðnÞ; λðnÞÞ is

Z
dx∑

λ

πðx; λÞ½1 − αðx; λÞ�δð~x − xðnþ1ÞÞδðλ − λðnþ1ÞÞ ¼ πð~xðnþ1Þ; λðnþ1ÞÞ½1 − αð~xðnþ1Þ; λðnþ1ÞÞ�: [36]
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The latter contribution from accepting the candidate such that ðxðnþ1Þ; λðnþ1ÞÞ ¼ ðxT; λTÞ is,

Z
dx∑

λ

πðx; λÞ
Z

dX
Z

dΛρðX; Λjx; λÞAðX jΛÞδðxT − xðnþ1ÞÞδðλT − λðnþ1ÞÞ

¼
Z

dx0∑
λ0

Z
dX

Z
dΛ½πðx0; λ0ÞρðX; Λjx0; λ0ÞAðX jΛÞ�δðxT − xðnþ1ÞÞδðλT − λðnþ1ÞÞ

¼
Z

dxT∑
λT

Z
d ~X

Z
d ~Λ½πð~xT; λTÞρð ~X; ~Λj~xT; λTÞAð ~X j ~ΛÞ�δðxT − xðnþ1ÞÞδðλT − λðnþ1ÞÞ

¼ πð~xðnþ1Þ; λðnþ1ÞÞαð~xðnþ1Þ; λðnþ1ÞÞ; [37]

where ρðX; Λjx0; λ0Þ≡ ΠðX jx0; ΛÞPðΛjx0; λ0Þ is the probability of
generating the trajectory-protocol pair ðX; ΛÞ from ðx0; λ0Þ, and
the pathwise detailed balance condition (Eq. 6) is used to pro-
duce the quantity in brackets.

Taking the sum of Eqs. 36 and 37, we find that the equilibrium
distribution is preserved

pðxðnþ1Þ; λðnþ1ÞÞ ¼ πðxðnþ1Þ; λðnþ1ÞÞ: [38]

By analogous reasoning, maintaining the momentum upon
rejection, ðxðnþ1Þ; λðnþ1ÞÞ ¼ ðxðnÞ; λðnÞÞ, and flipping it upon accep-
tance, ðxðnþ1Þ; λðnþ1ÞÞ ¼ ð~xT; λTÞ will also preserve the equilibrium
distribution.

Acceptance Criteria for Overdamped Langevin (Brownian) Integrator
of Ermak and Yeh. A common integrator for Brownian dynamics
(the overdamped regime of Langevin dynamics), in which only
coordinates x are explicitly integrated, is given by Ermak and
Yeh (24, 25). In our notation, where the perturbed coordinates
x�t are propagated by one step of the stochastic integrator to
obtain xt, application of the propagation kernel Kðx�t ; xtÞ can
be written,

xt ¼ x�t −
Δt
γm

Ftðx�t Þ þ
ffiffiffi
2

p �
Δt
γm

�
1∕2

ξt; [39]

where m is the particle mass, FtðxÞ≡ −ð∂∕∂xÞHtðxÞ is the (poten-
tially time-dependent) systematic force, and γ is an effective col-
lision frequency or friction coefficient with units of inverse time.
The noise history ξt for each degree of freedom is a normal ran-
dom variate with zero mean and variance β−1, drawn from the
distribution

ϕðξtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πβ−1

p exp
�
−
β

2
ξ2t

�
: [40]

In NCMC, every application of the propagation kernel Kt pro-
duces a transition x�t → xt determined by the noise history variable
ξt, there is a corresponding ~ξt that generates the opposite step,
xt → x�t . By noting

xt ¼ x�t −
Δt
γm

Ftðx�t Þ þ
ffiffiffi
2

p �
Δt
γm

�
1∕2

ξt

x�t ¼ xt −
Δt
γm

FtðxtÞ þ
ffiffiffi
2

p �
Δt
γm

�
1∕2

~ξt; [41]

we can compute the relationship

~ξt ¼
1ffiffiffi
2

p
�
Δt
γm

�
1∕2

½FtðxtÞ þ Ftðx�t Þ� − ξt: [42]

Then, the ratio of transition kernels appearing in Eq. 10 can be
written in terms of noise history ξt and the computed reverse
noise history ξ�t

ΔSðXÞ ¼ − ln
YT
t¼1

Ktðxt; x�t Þ
Ktðx�t ; xtÞ

¼ − ln
YT
t¼1

ϕð~ξtÞj ∂x
�
t

∂~ξt
j

ϕðξtÞj ∂xt∂ξt
j ¼ − ln

YT
t¼1

ϕð~ξtÞ
ϕðξtÞ

¼ − ln
YT
t¼1

exp
�
−
β

2
ð~ξ2t − ξ2t Þ

�
¼ β

2∑
T

t¼1

ð~ξ2t − ξ2t Þ; [43]

where the tildes are dropped because the microstate x contains no
momenta. The quantity j∂xt∕∂ξtj represents the Jacobian for the
change of variables from the ξt to xt, and the Jacobians in the
numerator and denominator cancel. The quantity in Eq. 43
can easily be computed during integration.

Acceptance Criteria for Langevin Integrator of Brooks, Brünger, and
Karplus (BBK). The Brünger–Brooks–Karplus (BBK) stochastic in-
tegrator (38, 39) is a popular integrator for simulating Langevin
dynamics. In our notation, where the perturbed coordinates x�t
are propagated by one step of the stochastic integrator to obtain
xt, application of the propagation kernel Kðx�t ; xtÞ can be written

v0t ¼ v�t þ
Δt
2m

�
Ftðr�t Þ − γmv�t þ

ffiffiffiffiffiffiffiffiffi
2γm
Δt

r
ξt

�
rt ¼ r�t þ Δtv0t

vt ¼
1

1þ γΔt
2

�
v0t þ

Δt
2m

�
FtðrtÞ þ

ffiffiffiffiffiffiffiffiffi
2γm
Δt

r
ξ0t

��
; [44]

where we have used a velocity Verlet discretization of the BBK
integrator (36, 40). Here rt and vt denote the respective Cartesian
position and velocity components of the microstate xt, γ the ef-
fective collision frequency with units of inverse time, and m the
particle mass. v0t is an auxiliary variable used only in simplifying
the mathematical representation of the integration scheme. Note
that we require two random variates, ξt and ξ0t, per degree of free-
dom per timestep in order for this scheme to be able to generate
both the forward trajectory X and its time-reverse ~X (e.g., section
2.2.3.2 of ref. 36).

The noise history terms ξt and ξ0t are normal random variates
with zero mean and variance β−1. Their joint distribution can
therefore be written

ψðξt; ξ0tÞ ¼
1

2πβ−1
exp

�
−
β

2
ðξ2t þ ξ02t Þ

�
: [45]

For every step x�t → xt, the positions and velocities undergo a tran-
sition ðr�t ; v�t Þ → ðrt; vtÞ determined by the noise variables ðξt; ξ0tÞ.
A corresponding choice of noise variables ð~ξt; ~ξ0tÞ will generate the
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reverse step, ~xt → ~x�t ; carrying ðrt; −vtÞ → ðr�t ; −v�t ÞWith a little al-
gebra, it is seen that

~ξt ¼ ξ0t −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γmΔtvt

p
~ξ0t ¼ ξt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γmΔtv�t

p
: [46]

To write the ratio of transition kernels appearing in Eq. 10 in
terms of noise variables ðξt; ξ0tÞ and the computed reverse noise
variables ð~ξt; ~ξ0tÞ, we must first compute the Jacobian Jðξt; ξ0tÞ be-
cause the random variates are not in Cartesian space

Jðξt;ξ0tÞ≡ det
∂rt
∂ξt

∂vt
∂ξt

∂rt
∂ξ0t

∂vt
∂ξ0t

" #
; [47]

which can be shown to be independent of ξt and ξ0t. The condi-
tional path action difference can now be computed

ΔSðXÞ ¼ − ln
YT
t¼1

Ktð~xt; ~x�t Þ
Ktðx�t ; xtÞ

¼ − ln
YT
t¼1

ψð~ξt; ~ξ0tÞJð~ξt; ~ξ0tÞ
ψðξt; ξ0tÞJðξt; ξ0tÞ

¼ β

2∑
T

t¼1

½ð~ξ2t þ ~ξ02t Þ − ðξ2t þ ξ02t Þ�; [48]

where the ratio of Jacobians Jð~ξt; ~ξ0tÞ∕Jðξt; ξ0tÞ cancels because the
Jacobians are independent of the noise variates.

Derivation of Effective Correlation Time for Mixed MD/NCMC Sam-
pling. For simplicity, we make the assumption that the system
of interest has two long-lived conformational states of equal
population with dimer extensions rc and re. This assumption holds
to good approximation for the WCA dimer example considered
here, and may apply to other systems of interest as well. We as-
sume that the correlation time for a fixed number of MD simula-
tion steps per iteration is given by τMD, and describe the
probability of finding the system ends up in a given conforma-
tional state after one iteration by a 2 × 2 column-stochastic tran-
sition matrix TMD

TMD ¼ 1 − α α
α 1 − α

� �
: [49]

For a 2 × 2 system whose time evolution is governed by the
column stochastic transition matrix T, we can write the autocor-
relation function for the dimer extension r as

CðnΔtÞ ¼ hrð0ÞrðnΔtÞi ¼ ½ rc re �Tn 1∕2 0

0 1∕2

� �
rc
re

� �

¼ ½ rc re �U 1 0

0 μn

� �
U−1 1∕2 0

0 1∕2

� �
rc
re

� �
¼ ðC0 − C∞Þμn þ C∞; [50]

where the transition matrix T has unitary eigenvalue decomposi-
tion UMU−1, and μ is the nonunit eigenvalue of T. The constants
are C0 ¼ ð1∕2Þðr2c þ r2eÞ and C∞ ¼ ð1∕4Þðrc þ reÞ2.

Relating this to the autocorrelation time τ estimated from a
timeseries, intended to reflect the fit to

CðtÞ ¼ ðC0 − C∞Þe−t∕τ þ C∞; [51]

we can see that τ ¼ −1∕ ln μ. We then determine that the correla-
tion time τMD ¼ −1∕ ln μMD, with μMD ¼ 1 − 2α.

Similarly, we can write the probability that the NCMC step
will carry the system from one conformational state to another in
terms of the acceptance probability γ, which we assume to be sym-
metric,

TNCMC ¼ 1 − γ γ
γ 1 − γ

� �
; [52]

where we have correlation time τNCMC ¼ −1∕ ln μNCMC and
μNCMC ¼ 1 − 2γ.

The effective transition matrix Teff for iterations consisting of
MD simulation steps followed by an NCMC trial is given by

Teff ¼ TMDTNCMC ¼ 1 − α α
α 1 − α

� �
1 − γ γ
γ 1 − γ

� �

¼ 1 − ðαþ γÞ ðαþ γÞ − 2αγ
ðαþ γÞ − 2αγ 1 − ðαþ γÞ

� �
; [53]

where the effective correlation time τeff ¼ −1∕ ln μeff , with
μeff ¼ 1 − 2½ðαþ γÞ − 2αγ�. Substituting in α ¼ ð1 − e−1∕τMDÞ∕2
and γ ¼ ð1 − e−1∕τNCMCÞ∕2, we obtain

τeff ¼ −
1

ln½1 − ð1 − e−1∕τMDÞ − ð1 − e−1∕τNCMCÞ þ ð1 − e−1∕τMD Þð1 − e−1∕τNCMCÞ�
¼ −

1

ln½e−1∕τMDe−1∕τNCMC � ¼
1

τ−1MD þ τ−1NCMC
¼ τMDτNCMC

τMD þ τNCMC
: [54]

As a check of the accuracy of Eq. 54, we note that for MD with
2,048-step NCMC switching, we compute τeff ≈ 4.0 iterations,
using only τMD ¼ 299.8 iterations and the NCMC acceptance
probability γ ¼ 12.1%. The actual correlation time measured
from a 10,000 iteration simulation is computed to be τeff ¼ 4.0.
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