
Far-from-equilibrium measurements of thermodynamic length

Edward H. Feng
College of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA

Gavin E. Crooks
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

�Received 9 May 2008; revised manuscript received 3 July 2008; published 29 January 2009�

Thermodynamic length is a path function that generalizes the notion of length to the surface of thermody-
namic states. Here, we show how to measure thermodynamic length in far-from-equilibrium experiments using
the work fluctuation relations. For these microscopic systems, it proves necessary to define the thermodynamic
length in terms of the Fisher information. Consequently, the thermodynamic length can be directly related to
the magnitude of fluctuations about equilibrium. The work fluctuation relations link the work and the free-
energy change during an external perturbation on a system. We use this result to determine equilibrium
averages at intermediate points of the protocol in which the system is out of equilibrium. This allows us to
extend Bennett’s method to determine the potential of the mean force, as well as the thermodynamic length, in
single-molecule experiments.
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Modern experimental techniques allow the manipulation
of single molecules and the measurement of the thermody-
namic properties of microscopic systems �1–5�. For example,
Collin et al. �3� recently measured the work performed on a
single RNA hairpin as it was folded and unfolded using op-
tical tweezers. From these out-of-equilibrium measurements,
they extracted the equilibrium free-energy change using the
recently discovered work fluctuation relations �6–8� �Eq.
�13��. These relations, which connect the free-energy change
and the work done on a system by an external perturbation,
remain valid no matter how far the system is driven away
from thermal equilibrium.

In this article, we will demonstrate that free energy is not
the only important quantity that can be extracted from out-
of-equilibrium work measurements; we can also measure the
thermodynamic length �9–16�. Thermodynamic length is a
path function that measures the distance along a path in ther-
modynamic state space. This is in contrast to the free-energy
change, a state function which depends only on the initial
and final values of the controllable parameters, and not on
the path. Mathematically, the thermodynamic length is de-
fined by a Riemannian metric on the manifold of equilibrium
ensembles �17,18�. Among other useful physical properties,
the thermodynamic length bounds the dissipation of slow,
but finite time transformations �12,14�. Moreover, the ability
to measure thermodynamic length and free-energy change
from out-of-equilibrium measurements indicates that these
equilibrium properties influence the behavior of driven sys-
tems even far from equilibrium.

Thermodynamic length was originally defined using the
second derivatives of a thermodynamic potential with respect
to its natural variables �9,10�. However, this definition only
works for microscopic systems when the controlled variables
are intensive �e.g., temperature� �16�. To circumvent this re-
striction, herein we will redefine the thermodynamic length
in terms of Fisher information �17,19�. This approach is
equivalent to the original definition for large systems in the
thermodynamic limit �16,18�, but can also be applied, with-

out restriction, to microscopic systems or to problems out-
side of thermodynamics entirely.

Given a family of probability distributions ��x ��� for out-
comes x that vary smoothly with a collection of parameters
�= ��i�, the Fisher information matrix �20,21� is

Iij��� � 	 dx��x���
� ln ��x���

��i

� ln ��x���
�� j . �1�

The length of a path ��s� for s� �0,1� in parameter space
measured using the Fisher metric �also known as the Fisher-
Rao, Rao, or entropy differential metric� is �19�

L = 	
0

1 
�
ij

d�i�s�
ds

Iij„��s�…
d� j�s�

ds �1/2
ds . �2�

The Fisher matrix Iij acts as a metric tensor and equips the
manifold of parameters with a Riemannian metric �17,19�. It
is also useful to define a related quantity, the Fisher diver-
gence

J � 	
0

1

�
ij

d�i�s�
ds

Iij„��s�…
d� j�s�

ds
ds . �3�

The length and divergence are connected by the relation J
�L2 due to the Cauchy-Schwarz inequality.

The Fisher metric can be applied to any family of prob-
ability distributions. Here, we focus on probability distribu-
tions of a system in thermal equilibrium. In the canonical
ensemble �22,23�, the probability of a microstate x is

��x��� = exp��F��� − �E�x,��� , �4�

where �=1 /kBT is the inverse temperature T of the environ-
ment in natural units �kB is the Boltzmann constant�, E�x ,��
is the energy of the system, which depends both on the in-
ternal state x and the external control parameters �, and F���
is the free energy:

�F��� = − ln �
x

exp�− �E�x,��� . �5�
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For a case in which � is a single controllable parameter,
the Fisher information is

I��� = �2
�dF���
d�

−
�E�x,��

��
�2�

�

, �6�

where �¯�� indicates an ensemble average over the distribu-
tion ��x ���.

Let us consider two examples. First, suppose the system
under examination is a single polymer and the parameter
under control is the end-to-end distance L �concretely, an
RNA hairpin, with DNA handles, attached to beads held by a
translating optical trap �3��. The instantaneous tension T
= �E

�L is the force exerted on the polymer by the apparatus
constraining the distance between the polymer ends. The
Fisher information for this system is equal to the variance of
the tension at equilibrium,

I�L� = �2���T� − T�2� , �7�

and therefore the thermodynamic length �Eq. �2�� is equal to
the cumulative root-mean-square equilibrium fluctuations in
tension on the molecule.

On the other hand, suppose control is exerted by applying
constant tension to the ends of the polymer. The total energy
is then a linear function of length and tension, E�x ,T�
=U�x�−TL�x�, and the Fisher information is equal to the
variation of the end-to-end polymer length at equilibrium:

I�T� = �2���L� − L�2� . �8�

Again, the Fisher information has a simple physical interpre-
tation in terms of equilibrium fluctuations, and the thermo-
dynamic length �Eq. �2�� is equal to the cumulative root-
mean-square fluctuations along the path. If, as in the second
case, the energy is a linear function of the control parameter,
the Fisher information is equal to the second derivative of
the free entropy �15,16,18�, but this is not true in the general.

To demonstrate how to measure thermodynamic length in
far-from-equilibrium experiments, we will model the dynam-
ics of the system as a driven, discrete-time, inhomogeneous
Markov process �7,24,25�. The microscopic state of the sys-
tem is denoted by x, and the history of the system will be
denoted by xa,b��xa ,xa+1 , . . . ,xb�, where a�b. The time-
reversed trajectory is denoted by x̃b,a��xb ,xb−1 , . . . ,xa�. The
internal energy E�x ,�� depends on a control parameter �,
which varies according to a predetermined protocol �a,b
���a ,�a+1 , . . . ,�b�. The protocol of the conjugate time-

reversed experiment is �̃b,a���b ,�b−1 , . . . ,�a�. At each inte-
ger time t, the control value changes from �t to �t+1 in the
forward protocol and �t+1 to �t in the reversed protocol. Be-
tween these time points, � is constant.

The probability of observing a particular trajectory xa,b as
the system is driven from thermal equilibrium by the proto-
col �a,b can be written as �7,24,25�

Pa,b�xa,b� � ��xa��a��
t=a

b−1

p�xt+1�xt,�t� , �9�

where ��xa ��a� is the initial equilibrium probability distribu-
tion with fixed � �Eq. �4�� and p�xt+1 �xt ,�t� is the probability

of transitioning from state xt at time t to state xt+1 at t+1,
given the value �t at time t. These transition probabilities
satisfy the stochastic property

�
x�

p�x��x,�� = 1, �10�

which ensures conservation of probability, and the balance
condition

�
x

p�x��x,����x��� = ��x���� , �11�

which ensures that the distribution given by the canonical
ensemble is the stationary distribution at time t. While the
transition matrix at time t preserves ��xt ��t�, the probability
distribution of a state at time t�a along a trajectory is in
general different from this equilibrium distribution in our
model for a dynamical process driven away from an initial
equilibrium.

The transition probabilities of the time-forward and time-
reversed dynamics are related, since, at equilibrium, the tran-
sition x→x� in the forward dynamics has the same probabil-
ity as the transition x�→x in the reversed dynamics �25,26�,
given a fixed �. Explicitly, the time-reversed transitions are
related to the time-forward transitions by

p̃�x�x�,����x���� = p�x��x,����x��� . �12�

A direct consequence of this time-reversal symmetry is the
work fluctuation theorem �3,7,25�: the ratio of the probabili-
ties of the forward and reverse trajectories is the exponential
of the observed dissipation along the forward trajectory:

Pa,b�xa,b�
Pb,a�x̃b,a�

= e�Wa,b�xa,b�−�	Fa,b = e
a,b�xa,b�. �13�

Here 	Fa,b�Fb−Fa is the free-energy change and

Wa,b�xa,b� = �
t=a

b−1

�E�xt+1,�t+1� − E�xt+1,�t�� �14�

is the work transferred to the system during the forward pro-
cess �24,27�. The dissipation 
a,b�xa,b�=��Wa,b�xa,b�
−	Fa,b�, the irreversible increase in entropy along the for-
ward trajectory, is proportional to the difference between the
work and the free-energy change. Note that work, free-
energy change, and dissipation are all odd functionals under

a time reversal—e.g., W̃b,a�x̃b,a�=−Wa,b�xa,b�.
We can express the trajectory ensemble average of an

arbitrary trajectory-dependent function F�xa,b�, starting from
thermal equilibrium, as

�F�xa,b��a,b � �
xa,b

Pa,b�xa,b�F�xa,b� �15�

and similarly for the conjugate process,

�F̃�x̃b,a��b,a � �
x̃b,a

P̃b,a�x̃b,a�F̃�x̃b,a� , �16�

in which F̃�x̃b,a�=F�xa,b� is an even functional under time
reversal.
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A key result in our development links two different tra-
jectory ensemble averages

�F�xa,b��a,b = �e−
0,a�x0,a�F�xa,b��0,T, �17�

where 0�a�b�T. Given a protocol �0,T, we can extract
the value of a trajectory ensemble average over a subinterval
�a,b, as if the system began in equilibrium at an intermediate
time a, by reweighting the observations by the exponential of
the dissipation from the initial to intermediate time.

This result follows directly from the work fluctuation re-
lation �Eq. �13�� and the Markovian property of the dynam-
ics:

�e−
0,a�x0,a�F�xa,b��0,T = �e−
0,a�x0,a�F�xa,b��0,b

= �e−
̃b,a�x̃b,a�F̃�x̃b,a��b,0

= �e−
̃b,a�x̃b,a�F̃�x̃b,a��b,a = �F�xa,b��a,b.

�18�

We truncate the time interval of the trajectory ensemble av-
erage using the stochastic property in Eq. �10�, apply a time
reversal with the work fluctuation theorem in Eq. �13�, trun-
cate again, and apply a second time reversal. This result gen-
eralizes previous trajectory ensemble averages of Hummer
and Szabo �8� and Chelli et al. �28�.

We can now use this relation to extract the thermody-
namic length from far-from-equilibrium experiments. The
discrete time analogs of the Fisher length and divergence are
the cumulative Jensen-Shannon length

LJS � �8�
t=0

T−1

�DJS„��x��t�,��x��t+1�… �19�

and cumulative Jensen-Shannon divergence �16�

JJS � 8�
t=0

T−1

DJS„��x��t�,��x��t+1�… . �20�

Here, DJS�p1 , p2� is the Jensen-Shannon divergence �29,30�
between two probability distributions p1 and p2:

DJS�p1,p2� =
1

2�
x

p1�x�ln
p1�x�

1

2
�p1�x� + p2�x��

+
1

2�
x

p2�x�ln
p2�x�

1

2
�p1�x� + p2�x��

. �21�

The Jensen-Shannon length is less than the Fisher length
LJS�L and approaches equality as the step size along the
path decreases �16�.

We can use the contracted trajectory average �Eq. �17��
and the canonical probabilities �Eq. �4�� to write the Jensen-
Shannon divergence between any pair of time points along
the path

DJS��t,�t+1� =
1

2

e−
0,t ln

2

1 + e−
t,t+1
�

0,t+1

+
1

2
e−
̃T,t+1 ln
2

1 + e−
̃t+1,t
�

T,t

�22�

as a trajectory average of the dissipation 
 along the forward
and reverse protocols. While DJS��t ,�t+1� is defined in terms
of averages over equilibrium probability distributions, it can
be related to trajectory ensemble averages of processes
driven arbitrary far from equilibrium. The derivation of Eq.
�22� requires the time-reversal symmetry in Eq. �12�.

We now encounter an apparent complication. The dissipa-
tion 
a,b=��Wa,b−	Fa,b� depends on both the work and the
free energy. Therefore, we must also determine the potential
of mean force, the free energy as a function of �, along the
entire path. This problem of extracting free-energy profiles
from out-of-equilibrium work measurements �rather than just
the difference in free energy between the initial and final
ensembles� has attracted recent attention �28,31,32�. Here,
we will solve this problem by adapting Bennett’s maximum
likelihood method �5,33–35�, which, as we shall see, is inti-
mately linked to the thermodynamic divergence �16�.

Suppose we have taken measurements of the work during
N repetitions of a protocol �a,b and another N measurements

from the conjugate protocol �̃b,a. Each repetition begins in
thermal equilibrium with the control parameter fixed at �a or
�b. Then the Bennett log-likelihood that the free energy
change 	Fa,b has a particular value is �16�

��	Fa,b� = �
n=1

N

ln
1

1 + e−�Wa,b
�n�+�	Fa,b

+ �
n=1

N

ln
1

1 + e−�W̃b,a
�n�+�	Fb,a

, �23�

where Wa,b
�n� and W̃b,a

�n� are the work measured between a and b
during the nth repetition of the forward and reverse experi-
ments, respectively.

Next we extend this result using the contracted trajectory
average �Eq. �17�� to estimate the likelihood of the free-
energy change between any two points along the protocol. In
particular, we can estimate the log-likelihood for the entire
free-energy profile by summing the log-likelihood for every
pair of neighboring time points:

���F�� = �
t=0

T−1 
�
n=1

N

e−
0,t
�n�

ln
1

1 + e−
t,t+1
�n�

+ �
n=1

N

e−
̃T,t+1
�n�

ln
1

1 + e−
̃t+1,t
�n� � . �24�

Here, �F�= �F0 ,F1 , . . . ,FT� is the free-energy profile. Since
only differences in free energy are relevant, one free energy
is set to zero or some other convenient reference. Since each
experimental realization of the forward and reverse protocols
begins in equilibrium, the probability of each forward and

reverse realizations is P0,N�x0,N� and P̃N,0�x̃N,0�, respectively.

BRIEF REPORTS PHYSICAL REVIEW E 79, 012104 �2009�

012104-3



Hence, we have written this expression using the measured
dissipation 
a,b

�n� =��Wa,b
�n� −	Fa,b� so that the relationship with

Eq. �22� is clear. To within an additive constant, the total
Bennett log-likelihood is proportional to the cumulative
Jensen-Shannon divergence. Therefore, we can simulta-
neously determine the potential of mean force, the thermo-
dynamic divergence, and the thermodynamic length from the
same collection of work measurements. We first determine

the free-energy profile �F̂� that maximizes the log-likelihood,
which immediately provides an estimate of the thermody-
namic divergence:

ĴJS =
8

N
�1

2
���F̂�� + TN ln 2� . �25�

We can then calculate a maximum likelihood estimate of the

thermodynamics length L̂JS in Eq. �19� using the free-energy
profile.

The analysis developed in this paper allows the extraction
of thermodynamics length from the force-extension curves
already measured in single-molecule RNA pulling experi-

ments �1–3�. One captures a RNA hairpin in an optical twee-
zer and repeatedly measures the force on the RNA molecule
as a function of extension. These far-from-equilibrium force
extension curves will then yield the potential of mean force,
plus the thermodynamic length and divergence of the proto-
col. Far-from-equilibrium measurements of thermodynamic
length have interesting implications for nanoscale machines
and biological motors, since the square of this length bounds
the dissipation during finite-time protocols �12�. Hence, ther-
modynamic length is intimately connected with the useful
work that a system can perform. It would, for example, be
interesting to measure the thermodynamic length along the
cycle of a molecular motor. For a machine operating at a
finite rate, but otherwise optimized to minimize dissipation,
it is expected that the rate of change in thermodynamic
length along the cycle would be constant �13�.
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