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Thermodynamic matrix exponentials and thermodynamic parallelism
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Thermodynamic computing exploits fluctuations and dissipation in physical systems to efficiently solve
various mathematical problems. It was recently shown that certain linear algebra problems can be solved
thermodynamically, leading to a speedup scaling with the matrix dimension. Here, we provide a thermodynamic
algorithm for exponentiating a real matrix. We describe a simple electrical circuit involving coupled oscillators,

which can implement our algorithm. We also show that this algorithm provides an asymptotic speedup that is
linear in the dimension. Finally, we introduce the concept of thermodynamic parallelism to explain this speedup,
stating that thermodynamic noise provides a resource leading to effective parallelization of computations.
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I. INTRODUCTION

The exponential of a matrix plays a central role in the study
of linear differential equations. A real matrix A € R?*? speci-

fies a homogeneous linear differential equation dx = —Ax dt,
whose solution may be written

x(r) = e x(0), M
where e=*' can be defined in many equivalent ways (see

Table I). Examples occur in simulating classical and quantum
physical systems, processing audio and video signals [1], an-
alyzing economic time series data [2], and more recently in
machine learning (e.g., reinforcement learning [3] and large
language models [4]). Linear differential equations also ap-
pear in the analysis of Markov processes, whose applications
include queuing theory [5], biology [6], and rating systems
[7].

Due to their important and diverse applications, there has
been intense research activity on the efficient computation
of matrix exponentials in the last century [8,9], including
physics-inspired digital algorithms that utilize the structure of
the input matrix in the context of classical [10] or quantum
Monte Carlo [11,12]. The most popular numerical methods
are diagonalization and Padé approximation [13,14], which
have time complexity O(d>) or O(d®) for general matrices.'
The matrix exponential can also be found by solving the
initial value problem (IVP) dx = —Axdt, x(0) = ¢&; for each
standard basis vector &;. This approach also requires O(d?)
operations, as each IVP can be solved in O(d 2) operations, but
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'Here, w =~ 2.371552 is the fast matrix multiplication constant
[15].
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it can be parallelized by allocating one thread for each IVP,
thus taking O(d?) time if you have d processors. However,
parallelizing to d processors can be challenging. A mod-
ern A100 GPU has 6912 cores [16] which allows highly
parallel algorithms [17,18], but adding more cores is diffi-
cult due to heat dissipation and the complexity of intercore
communication.

A variety of recent work has investigated the use of phys-
ical processes as a resource for computation. This includes
Ising machines [19], probabilistic bits [20], coupled oscilla-
tors [21], neuromorphic circuits [22], and memristor crossbars
[23,24].

More specifically, an analog device such as an electrical
circuit [25] can encode the (deterministic) differential equa-
tion in its voltages. However, analog devices face serious
challenges due to their susceptibility to errors and the diffi-
culty of scaling the necessary hardware to large problem sizes.
For example, as illustrated in Fig. 1(b), implementing the
matrix exponentiation method described above in an analog
way would require d separate analog devices, each capable
of solving a d-dimensional linear differential equation (each
device would therefore need to store the d? elements of A).
Moreover, each device would be influenced by various types
of errors, including noise caused by thermal fluctuations. See
the Supplemental Material [26] for a full analysis of such an
analog device under natural noise assumptions.

TABLE I. Some ways to define and compute ¢4 [27].

Limit
limg oo (I + 2)°
Schur form, A = QT Q"
Qdiag(e")Q*

Padé approximation
T+5+ )T =5+

Power series
I+A+& 148 4.
Differential system
X'(t)=AX@1),X0)=1
Cauchy integral

L fr &z — A7 ldz

2mi
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FIG. 1. Analog and thermodynamic approaches. (a) The target
matrix ™% has d? elements that must be experimentally charac-
terized. An individual experiment can be viewed as sampling these
elements from a distribution, due to inherent randomness in the
experiment (either unintentional in the analog case or intentional in
the thermodynamic case). (b) A naive analog approach would sample
d elements at a time, while (c) the thermodynamic approach samples
all d? elements at once by using noise as a resource, an advantage we
call thermodynamic parallelism.

In this paper, we show how to evaluate matrix exponen-
tials on a thermodynamic computing [28-36] device with
d cells, using a stochastic differential equation (SDE). Our
algorithm is not susceptible to thermal noise, and in fact relies
on noise as a resource, an advantage over existing analog
methods. Moreover, the stochastic dynamics of the thermo-
dynamic device can be put into an exact correspondence with
the deterministic evolution that an ensemble of d copies of the
device would undergo in the absence of noise. We respectively
refer to these properties of our algorithm as noise resilience
and thermodynamic parallelism, and they result in significant
theoretical advantages over existing methods, both analog and
digital.

Our algorithm provides a polynomial speedup over known
methods, which is due to thermodynamic parallelism. While
the time complexity of O(d?) can also be obtained using a
parallel digital or analog method (as discussed earlier), this
requires physical parallelism, meaning the hardware must be
physically duplicated in order to solve the d initial value
problems simultaneously. Our approach allows for the com-
putation of a matrix exponential using a single device which
would otherwise be capable of solving only one IVP at a time,

and the total time required scales as O(d?). As a result, a ma-
trix exponential can be computed with similar hardware and
time requirements as would be necessary to solve a single IVP
using a deterministic analog device, as shown in Fig. 1(c). To
summarize, digital and analog methods allow for a time-space
tradeoff, achieving either 0(d?) time with a single thread or
0(d?) time with O(d) threads. Our thermodynamic matrix
exponential algorithm runs in O(d?) time with a single device
encoding d? quantities.

In what follows we give a basic description of the hard-
ware necessary for this algorithm and the steps involved in
its execution. We also present numerical simulation results,
confirming that the time required scales no worse than O(d?).
An analytical derivation of the time required for evaluating the
matrix exponential can be found in the Supplemental Material
[26].

II. THERMODYNAMIC MATRIX EXPONENTIALS

Let A € R?*? be a real symmetric positive definite matrix
(note that we will relax this assumption later in the paper).
Suppose we would like to find the matrix exponential e=.
We assume that the thermodynamic device evolves a system
dictated by the overdamped Langevin equation

dx = —Axdr + N0, 287 'Bdr], )

for scalar B € R™ and symmetric positive definite B. These
dynamics represent an Ornstein-Uhlenbeck (OU) process with
correlation function (or correlation matrix)

C(t,s) = ([x(1) — x(@))[x(s) — (x())HT) . 3)

We will assume that (x(0)) = 0, which implies that (x(¢)) = 0
at all times. The correlation matrix becomes

C(t,s) = (x(t)xT(s)) .
At equilibrium, x ~ N[0, X] is normally distributed, with a
correlation function given by [37]

Ct+t,1)=(x(t +)x()T) = 47X,

The covariance matrix ¥ satisfies the Lyapunov equation

AY + TAT =257'B. 4)

Setting B = A results in the solution ¥ = B~ 'I. Therefore the
SDE

dx = —Axdr + N[0, 287 'Adr] (5)
has a correlation function
Clt+1,1)= B le ™. (6)

Importantly, according to Eq. (6) the correlation function
evolves in the same way as would a collection of d deter-
ministic analog devices, which underlies the parallelism of the
thermodynamic algorithm.

However, the correlation function is not directly accessible
by measurement, and must be estimated via an average. Due
to the ergodicity of this system [30,37], we can use a time
average instead of an ensemble average, and obtain

—AT ~ ﬂ /T T
e At & dr x(t + )X (1), (7)
T Jo
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which can be accumulated in continuous-time on an analog
device (see Ref. [30]).

The parameters 8 and 7t are tuning parameters and the
matrix exponential e~ can be extracted by rescaling the input
Aby 7L

III. ARBITRARY MATRICES

We can relax the constraint that A needs to be symmetric
positive definite. Suppose we want e for arbitrary M. Then
consider A=cl +M and B = %(A + AT) [which similarly
results in ¥ = B! solving the Lyapunov equation in (4)].
The parameter ¢ € R must be large enough that the eigen-
values of A have a positive real part, which will also ensure
that B is positive definite and a valid diffusion matrix. The
SDE becomes

dx = —Axdr + N0, B~ (A + AT)dr]. 8)

Applying the previous procedure will produce an approxima-
tion to

A _ e—c]I—M — o€ —M‘

e e e

Therefore a scalar rescaling by e provides the desired e™.
These arguments show that our thermodynamic algorithm can
be used to obtain the exponential of any matrix in principle.
In practice, one would have to be careful with precision if
¢ is required to be too large. We find that the time required
to evaluate the matrix exponential depends on the condition
number, and the condition number of A differs from that of M.
Also, if ¢ is large then there will be a large loss in precision
because the elements of ¢~ will be very small, so it may be
necessary to rescale M as well. A task for future work is to
carefully take these considerations into account to describe
how to select ¢ in practice and the subsequent complexity
of the matrix exponential algorithm in the case of arbitrary
matrices.

IV. THERMODYNAMIC PARALLELISM

Let us now reflect on the mechanism of speedup. The
advantage of the thermodynamic algorithm is that it allows
for the collection of a sample of the matrix exponential in
constant time (that is, time not scaling with dimension) using
a device with d nodes, and d? couplings between them. Using
a deterministic analog algorithm, the same device could be
used to solve the d initial value problems in serial to obtain a
single sample of the matrix exponential, resulting in an O(d*)
time cost to collect the O(d?) samples.

The ability to solve d initial value problems simultane-
ously, using a device that ostensibly only solves one, can be
attributed to the probabilistic nature of the thermodynamic
algorithm. As discussed above, the correlation function is
given by C(t + 7,t) = B~ 'e™ 7. An analogy can be drawn
to an ensemble of d separate deterministic analog devices,
each of which solves the differential equation dx = —Ax dr.
We describe the state of this system by a matrix X, each of
whose columns is the state of a single device in the ensemble.
Initially we set the state of the ith device to the standard basis
vector &;, so X(0) = I. It is then apparent that X (1) = ¢4,
which is (up to a constant) the same as the time evolution of

the correlation matrix of the thermodynamic device. While the
state of the system x(¢) is a vector with only d components,
the correlation matrix (which is a property of the distribution,
rather than the state) has d? elements, representing the desired
matrix exponential.

Thermodynamic parallelism stems from the fact that the
probability distribution of the system is more informative
than the instantaneous state; this aligns with the intuition of
the system exploring multiple trajectories at the same time,
which is why we refer to this advantage as a form of paral-
lelism. Without noise, the above reasoning would break down.
The dynamics of the differential equation dx = —Axdt¢ are
contractive and the Shannon entropy of the system tends to
zero over time, meaning the correlations will eventually be
too small to measure. Thus, noise can be viewed as the key
resource that enables thermodynamic parallelism.

While we focus here on the matrix exponential algorithm,
similar arguments based on thermodynamic parallelism can
be used to explain the asymptotic advantage achieved by
the thermodynamic matrix inversion algorithm in Ref. [30].
In that work, the matrix inverse is found by estimating the
covariance matrix of the thermodynamic device, £ = (xxT).
For a symmetric positive definite matrix A, the SDE dx =
—Ax + N0, 2871 dt] eventually reaches a stationary distri-
bution x ~ N0, B7'A7!], so BX = A~! at equilibrium [30].
The matrix inverse could also be found by solving d linear
systems of equations of the form Ax = é;, where ¢é; is the
ith standard basis vector. An analog device could solve a
linear system of this form by evolving the ordinary differential
equation (ODE) dx = —(Ax — ¢;)dt for sufficiently long. A
collection of d such devices could solve the d linear systems
in parallel via the matrix ODE

dX = —AX dr +1ds. C))

In the thermodynamic matrix inverse algorithm, the covari-
ance matrix evolves under the ODE

dY = —AX dt — TAdr + 21 dr, (10)

where we set 8 = 1. This is a symmetrized version of Eq. (9),
and A and ¥ are symmetric, Equations (9) and (10) have
the same stationary solution X = ¥ = A~!. This means that
the thermodynamic matrix inverse algorithm allows a sin-
gle device similar to one in Fig. 2 to emulate a collection
of d deterministic analog devices. Moreover, this suggests
that thermodynamic parallelism, arising from stochastic noise,
may be a broader mechanism to explain the potential advan-
tage of thermodynamic computers.

V. PHYSICAL DEVICE CONSTRUCTION

Let us discuss how one could construct a device to im-
plement the thermodynamic matrix exponential algorithm.
Essentially, we need a device that can implement the SDE in
Eq. (5). Implementing this OU process with electrical circuits
has, to some extent, been discussed in Refs. [29,30] where
stochastic units (s-units) were proposed as the basic building
block of the hardware, with each s-unit composed of an RC
circuit with a stochastic voltage source. Indeed, an array of
s-units, capacitively coupled to one another, is shown in the
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FIG. 2. Possible hardware architecture for matrix exponentia-
tion. The overall system is composed of two subunits. One subunit
(bottom) outputs, as a vector of voltages, Gaussian noise with zero
mean and covariance matrix proportional to A. The other subunit
(top) takes this output as its noise source and directly simulates the
stochastic differential equation in (5).

top of Fig. 2, and in theory this s-unit array can simulate
Eq. (9).

However, an additional subtlety about Eq. (5) is that the
noise source is correlated. Hence, one needs a Gaussian noise
source that outputs the vector of correlated noise values to
provide the noise term in Eq. (5). This is shown simply as
a black box at the bottom of Fig. 2, while we give a detailed
discussion on how to construct this noise source in the Supple-
mental Material [26]. Namely, this noise source can consist of
an (additional) array of s-units that are capacitively coupled,
and the voltage vector outputted by the noise source is the
output of integrators that integrate the current flow through
the resistors in the s-units (see Supplemental Material [26] for
details).

VI. COMPLEXITY

As outlined earlier, the thermodynamic matrix exponential
algorithm has two steps: (1) Sample from the station-
ary distribution x(0) ~ N[0, B~'1] (digitally or otherwise).
(2) Evaluate Eq. (7) by integrating to time 7 determined using
Eq. (11) below.

We denote the time average appearing in Eq. (7) by
C, and define the root mean square (RMS) error £ =

\/ (le=47 — ,66”12;), where || - ||r is the Frobenius norm. As

shown in the Supplemental Material [26], we can achieve an
RMS error of £ or lower by setting the integration time larger

d =64
d =128
d = 256

10° 4

T i T
10? 10° 10t 10°

Time (us)

d =64
d =128
d = 256

10? 10° 10 10°

Time (ps)

FIG. 3. Error as a function of analog integration time for varying
matrix dimension. The error is the Frobenius norm of the sampled
matrix minus the true matrix exponential. (a) Matrices are positive
definite and drawn from a Wishart distribution (with 2d degrees of
freedom). (b) Matrices are asymmetric, with elements drawn from
the Haar distribution over orthogonal matrices. To make the eigen-
values have positive real part, a term cl is added as described in the
text, with ¢ = 1.1. Displayed are average and one standard deviation
over ten random seeds. Vertical lines represent the times fc when
the error falls below a threshold. Inset: Crossing time #¢ vs matrix
dimension d.

than the following lower bound,

2d(d + 1)e*min%
- lAlE ’

where k and oy, are respectively the condition number and
the smallest singular value of A. Therefore the time com-
plexity scaling is O(d*c£~?) which provides a speedup for
well-conditioned matrices, although we note that the condi-
tion number is not guaranteed to remain constant and may
well increase with dimension. However, many practical sce-
narios involve matrices where the condition number scales
favorably, allowing the algorithm to retain a computational
advantage.

an

VII. NUMERICS

Figure 3 shows the numerical simulation results for our
thermodynamic matrix exponentiation algorithm. The Frobe-
nius error is plotted versus time for various dimensions, with
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the insets showing the time to reach a given error threshold
versus dimension. For both positive-definite and more general
matrices, respectively shown in Figs. 3(a) and 3(b), the run-
time does not grow faster than O(d?), as expected (as we have
T and oy, = HZ_H constant). This result holds for matrices
drawn from a Wishart distribution and from an orthogonal
Haar distribution, which provides evidence that our bounds
on polynomial scaling are widely applicable. Reproducible
code for all simulations can be found in the open-source
thermodynamic simulator THERMOX [38].

VIII. DISCUSSION

We have shown that matrix exponentiation can be solved
in an amount of time proportional to the square of the di-
mension, whereas previously the best known upper estimates
of asymptotic time complexity had higher-order polynomial
scaling with dimension. However, in this work we have not in-
vestigated the scaling of the energy cost of our algorithm, and
describing this energy scaling is a crucially important task.
In other work, some evidence has been found of energetic
advantage for similar thermodynamic algorithms [30,39].

The promise of quantum computing has often been at-
tributed to the (still controversial) idea of quantum parallelism
[40] and quantum matrix exponentiation has been proposed
[41], but the practicality and commercial impact of quantum
computing remains long term in timescale. We have found that
a computationally useful form of parallelism can be achieved

within a classical probabilistic setting with near-term hard-
ware, and its origin is explained unambiguously. It should be
noted that, while the presence of this parallelism may yield
insight into the theoretical speedup we have identified, the
complexity of our algorithm can be analyzed without involv-
ing the idea of parallelism. Moreover, at present it is not clear
how the type of parallelism we have identified compares with
the more conventional forms of parallelism commonly used
in digital computing, for example, parallelized arithmetic on
a GPU. Elucidating this relationship is an area of ongoing
research.

Matrix exponentiation is relevant to virtually all time-
dependent processes that have linear feedback. These appear,
of course, in physics, but also in disparate fields such as
machine learning, biology, and economics. The future impact
of these results, then, is limited only by the scale of thermo-
dynamic hardware that can be built. These results also reveal
a potential polynomial separation between the digital com-
puting and thermodynamic computing paradigms, in terms of
time complexity.

Demonstrating the utility of thermodynamic computation
over standard digital hardware can only be convincingly
proven through experimentation, so a physical demonstra-
tion is a key future direction. We anticipate that, as a
result of the potential advantages we have found, thermo-
dynamic computing will become a rich and competitive
ground for both theoretical and experimental work in the near
future.
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