npj | unconventional computing

Article

https://doi.org/10.1038/s44335-025-00049-x

Thermodynamic natural gradient descent

®| Check for updates

Kaelan Donatella'?, Samuel Duffield"2(<, Maxwell Aifer', Denis Melanson', Gavin Crooks' &

Patrick J. Coles'

Second-order training methods have better convergence properties than gradient descent but are
rarely used in practice for large-scale training due to their computational overhead. This can be viewed
as a hardware limitation (imposed by digital computers). Here, we show that natural gradient descent
(NGD), a second-order method, can have a similar computational complexity per iteration to a first-
order method when employing appropriate hardware. We present a new hybrid digital-analog
algorithm for training neural networks that is equivalent to NGD in a certain parameter regime but
avoids prohibitively costly linear system solves. Our algorithm exploits the thermodynamic properties
of an analog system at equilibrium, and hence requires an analog thermodynamic computer. The
training occurs in a hybrid digital-analog loop, where the gradient and Fisher information matrix (or any
other positive semi-definite curvature matrix) are calculated at given time intervals while the analog
dynamics take place. We numerically demonstrate the superiority of this approach over state-of-the-
art digital first- and second-order training methods on classification tasks and language model fine-

tuning tasks.

With the rise of more sophisticated AT models, the cost of training them is
exploding, as world-leading models now cost hundreds of millions of dollars
to train. This issue is compounded by the ending of both Moore’s Law and
Dennard’s Law for digital hardware', which impacts both the runtime and
energy efficiency of such hardware. This highlights a need and an oppor-
tunity for specialized, unconventional hardware targeted at improving the
efficiency of training AT models.

Moreover, conventional digital hardware can be viewed as limiting the
range of training algorithms that a user may consider. Researchers are
missing an opportunity to co-design novel optimizers to exploit novel
hardware developments. Instead, relatively simplistic optimizers, such as
stochastic gradient descent (SGD), Adam’, and their variants’, are among
the most popular methods for training deep neural networks (DNNs) and
other large AT models. More sophisticated optimizers are rarely used due to
the associated computational overhead on digital hardware.

A clear example of this is second-order methods, which capture cur-
vature information of the loss landscape. These methods, while theoretically
more powerful in terms of convergence properties, remain computationally
expensive and harder to use, blocking their adoption. For example, natural
gradient descent (NGD)" involves calculating estimates of second-order
quantities such as the Fisher information matrix and performing a costly
linear system solve at every epoch. Some approximations to NGD, such as the
Kronecker-factored approximate curvature (K-FAC)®, have shown promise,
and K-FAC has shown superior performance to Adam”*. However, applying
such methods to arbitrary neural network architectures remains difficult’.

In this article, we present thermodynamic natural gradient descent
(TNGD), a new method to perform second-order optimization. This

method involves a hybrid digital-analog loop, where a GPU communicates
with an analog thermodynamic computer. A nice feature of this paradigm is
flexibility: the user provides their model architecture and the analog com-
puter serves only to accelerate the training process. This is in contrast to
many proposals to accelerate the inference workload of Al models with
analog computing, where the model is hardwired into the hardware, and
users are unable to change the model architecture as they seamlessly would
by using their preferred software tools"".

The analog computer in TNGD uses thermodynamic processes as a
computational resource. Such thermodynamic devices have previously been
proposed' ", have been theorized to exhibit runtime and energy efficiency
gains'””’, and have been successfully prototyped’"*’. Our TNGD algorithm
represents an instance of algorithmic co-design, where we propose a novel
optimizer to take advantage of a novel hardware paradigm. TNGD exploits a
physical Ornstein-Uhlenbeck process to implement the parameter update
rule in NGD. It has a runtime per iteration scaling linearly in the number of
parameters, and when properly parallelized it can be close to the runtime of
first-order optimizers such as Adam and SGD. Hence, it is theoretically
possible to achieve the computational efficiency of a first-order training
method while still accounting for the curvature of the loss landscape with a
second-order method. Moreover, our numerics show the competitiveness of
TNGD with first-order methods for classification and extractive question-
answering tasks.

There is a large body of theoretical research on natural gradient
descent*>” arguing that NGD requires fewer iterations than SGD to con-
verge to the same value of the loss in specific settings. While less is known
about the theoretical convergence rate of Adam, there exists a large body of

"Normal Computing Corporation, New York, NY, USA. 2These authors contributed equally: Kaelan Donatella, Samuel Duffield.

e-mail: sam@normalcomputing.ai

npj Unconventional Computing | (2026)3:5

http://crossmark.crossref.org/dialog/?doi=10.1038/s44335-025-00049-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44335-025-00049-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44335-025-00049-x&domain=pdf
mailto:sam@normalcomputing.ai
www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

empirical evidence that NGD can converge in fewer iterations than
Adamf),&Z-'l—ZT.

However, a single iteration of NGD is generally more computationally
expensive than that of SGD or Adam, which have a per-iteration cost scaling
linearly in the number of parameters N. NGD typically has a superlinear
complexity in the number of parameters. K-FAC’ aims to reduce this
complexity and invokes a block-wise approximation of the curvature
matrix, which may not always hold. While first introduced for multi-layer
perceptrons, K-FAC has been applied to more complex architectures, such
as recurrent neural networks” and transformers®, where additional
approximations have to be made and where the associated computational
overhead can vary.

There has been significant effort and progress towards reducing
the time- and space-complexity of operations used in the inference
workload of Al models, e.g., a variety of “linear attention" blocks have
been proposed”**’. However, there has been less focus on reducing the
complexity of training methods. While various approaches are taken to
accelerate training using novel hardware, these efforts typically aim to
reduce the constant coefficients appearing in the time cost of com-
putation. Especially relevant to our work, analog computing devices
have been proposed to achieve reduced time and energy costs of
training relative to available digital technology'®". These devices are
generally limited to training a neural network that has a specific
architecture (corresponding to the structure of the analog device). To
our knowledge, there has not yet been a proposal that leverages analog
hardware to reduce the complexity of training algorithms
such as NGD.

Given the existing results implying that fewer iterations are needed for
NGD relative to other commonly used optimizers, we focus on reducing the
per-iteration computational cost of NGD using a hybrid analog-digital
algorithm to perform each parameter update. Our algorithm therefore,
demonstrates that complexity can be improved in training (not only in
inference), and moreover that the per-iteration complexity of NGD can be
made similar to that of a first-order training method.

Results

Thermodynamic natural gradient descent

At a high level, TNGD combines the strength of GPUs (through auto-
differentiation) with the strength of thermodynamic devices at solving linear
systems. Regarding the latter,"” showed that a thermodynamic device, called
a stochastic processing unit (SPU), can solve a linear system Ax = b with
reduced computational complexity relative to standard digital hardware.
The solution to the linear system is found by letting the SPU evolve under an
Ornstein-Uhlenbeck (OU) process given by the following stochastic dif-
ferential equation (SDE):

dx = —(Ax — b)dt + N'[0,2p7" dt], 1)

where A is a positive matrix and f§ is a positive scalar (which can be seen as
the inverse temperature of the noise). Operationally, one lets the SPU settle
to its equilibrium state under the dynamics of (1), at which point x is
distributed according to the Boltzmann distribution given by:

x~N[A™'D,7'A7Y.)

One can see that the first moment of this distribution is the solution to
the linear system Ax = b. Exploiting this approach, TNGD involves a sub-
routine that estimates the solution to the linear system in the following
definition of the natural gradient

= F'vio), 3)
where F is the Fisher information matrix’, and €(6) is the objective function

to be minimized over the parameters 6. See the Methods section for more
details. For this particular linear system, the SDE in (1) becomes the

following:
g, = —(Fe 18k, — Vi dt + N0, 2k,dt])
= U}k HopJpi18kr — Vo)dt + N0, 260d] (5)

with g «. the value of the natural gradient estimate at time ¢ and iteration k, o
the variance of the noise. In the last step of (4), we used the generalized
Gauss-Newton (GGN) approximation to the Fisher matrix which involves J;
the Jacobian of the forward function, and H; the Hessian of the loss function
(see Methods for definitions). Comparing (1) and (4), we see that in the
equilibrium state (i.e. for large), the mean of g, , provides an estimate of the
natural gradient, in other words:

g = lim @) = F Vo . ©)

t—00

The overall TNGD algorithm is illustrated in Fig. 1. Using the current
parameter estimates 6, the GPU computes the matrices J and Hj, and the
vector V £, which can be accomplished efficiently using auto-differentiation.
The matrices Jp]fT, and Hj, as well as the vector V ¢, are uploaded to
component values (see Supplementary Material) on the SPU, which is then
allowed to equilibrate under the dynamics of (4). Next, samples are taken of
gr» and are sent from the SPU to the GPU, where samples are averaged to
yield an estimate of g Finally, the parameters are updated using the
equation

Os1 = O — 18y (7)

and this process may be repeated until sufficient convergence is achieved
(other update equations may also be employed, see Experiments).

Computational complexity and performance
The runtime complexity of TNGD and other second-order optimization
(that do not make assumptions on the structure of the Fisher matrix, hence
excluding K-FAC) algorithms is reported in Table 1. Specifically, thermo-
dynamic NGD (TNGD) is compared to other NGD variants that solve the
linear system in (3) using the conjugate gradient method™* (NGD-CG) and
using the Woodbury identity’® (NGD-Woodbury), further details on these
methods can be found in the Methods section. As explained, Thermo-
dynamic NGD (TNGD) has a runtime and memory cost dominated by the
construction and storage (before sending them off to the analog hardware)
of the Jacobian of the forward function and the Hessian of the loss. The ¢
factor denotes the analog runtime, and may be interpreted similarly to ¢ for
NGD-CG as a parameter controlling the approximation. For each optimizer
the number of model calls is reported. For all optimizers except NGD-CG
these calls can be easily parallelized thanks to vectorizing maps in PyTorch.
In Fig. 2 a comparison of the runtime per iteration of the four second-
order optimizers considered is shown. Figure 2(a) shows the runtime as a
function of the number of parameters N. The scaling of NGD as N’ can be
observed, and the NGD-CG data is close to flat, meaning the model calls
parallelize well for the range of parameter count considered. The linear
scaling of NGD-Woodbury and TNGD is also shown, although with a
different overall behaviour due to parallelization and a much shorter run-
time per iteration for TNGD. This shows that for the given range of Natd, =
20, we can expect a 100 x speedup over second-order optimizers. Figure 2(b)
shows the dependence of runtime on the output dimension d, for the
second-order optimizers. These results indicate that TNGD is most com-
petitive for intermediate values of d,. Finally, we note that with better
hardware, the scaling with both N and d, would be better, as the operations
to construct the Hessian and Jacobian can be more efficiently parallelized for
larger values. We note that Fig. 2(b) shows increasing scaling as d, increases
which is due to exhausting the parallelism capacity of the fixed GPU in

npj Unconventional Computing| (2026)3:5

www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

th—1

Fig. 1 | Overview of thermodynamic natural gra-
dient descent (TNGD). A GPU that stores the
model architecture and provides the gradient V &
and Fisher matrix Fy (through its representation
given by the Jacobian Jrand Hessian H; matrices
given by (17)) at step k is connected to a thermo-
dynamic computer, called the stochastic processing
unit (SPU). At times f;, the estimate of the natural ~
gradient g, is sent to the GPU, which updates the
parameters of the model and calculates gradients
and curvature matrices for some new data batch (xy,
yx)- During digital auto-differentiation, the SPU
undergoes dynamical evolution, either continuing to
approach its steady-state or remaining in it. After
some time, gradient V ¢ and Fisher matrix Fy are
sent to the SPU through a DAC and digital con-
trollers. This modifies the dynamics of the SPU, and
after some time interval, a new natural gradient
estimate g, ; is sent back to the GPU. Note that the
time between two measurements f;; — fx need not
be greater than the time between two auto-
differentiation calls. The hybrid digital-
thermodynamic process may be used asynchro-
nously as shown in the diagram (where the time of
measurement of ¢ and upload of the gradient and
Fisher matrix are not the same).

Automatic
Differentiation

Dynamical
Evolution

tr tot1
Automatic
Differentiation
GPU —> (€3:48)
VZ k—1 Vek -
Fr_1 gk Fy gk+1

Output

/\/‘V Parameters
6

SPU
Dynamical
Evolution

Table 1 | Runtime and memory complexity of optimizers
considered in this paper

Optimizer Runtime Memory Model
calls

SGD/Adam ObN) om) !

NGD O(N® + bd,N?) O(N?) bd,

NGD-CG O(cbN) Oon) 2

NGD-Woodbury O(bA?N + b°P) O(bd,N + ba?) bd;

Thermodynamic Oba:N + 1) O(bd,N + bd?) ba;

NGD

All operations are per iteration. The first line corresponds to first-order optimizers that evaluate the
gradient only, and apply diagonal rescalings and O(N) operations to it only. Vanilla NGD (second line)
includes the explicit storage and inversion of the GGN matrix as well as its construction, dominating the
runtime and memory cost. NGD-CG (third line) can be performed by running c iterations, each
dominated by GGN-vector products and has the same memory cost as first-order methods. NGD-
Woodbury can be performed by constructing the matrix VU and using the formula given by (20). This
results in a runtime cost dominated by constructing VU and inverting it, which also requires its storage.

calculating the Jacobian matrices (the dominating cost)—see Supplemen-
tary Material for further details.

In addition to the advantage in time- and energy-efficiency, TNGD has
another advantage over NGD-CG in terms of stability. For some patholo-
gical linear systems, CG fails to converge and instead diverges. However, the
thermodynamic algorithm is guaranteed to converge (on average) for any
positive definite matrix. To see this, note that the mean of §k_t evolves
according to

@) = exp(=Fi1)@ro — Fil V1) + F Vi ®)

There is still variance associated with the estimator of (g, ,), but the tra-
jectory converges to the stationary distribution (2), with high probability in
all cases. We also note that if we choose g , = V¥, _,, we obtain a smooth
interpolation between SGD (t = 0) and NGD (¢t = o).

Analog dynamics time t and delay time t4

A key insight in the seminal work on iterative approaches to the linear
system solve within NGD* is that the overall gradient descent algorithm can
still perform well even if the iterative linear system solver (conjugate

gradient) is only run for a small number of iterations. In terms of TNGD,
this corresponds to a smaller dynamics time ¢ and also motivates taking only
a single sample that approaches a sample from (2) (which we apply in all
experiments). As mentioned above, starting with g, , = V¢,_, results in a
starting point equivalent to SGD and as the trajectoi’y evolves closer to (2),
we expect the performance to improve but even the initial ¢ = 0 represents a
convergent algorithm. The effect of this hyperparameter ¢ is investigated in
Figs. 4 and 5 in the experiments section.

Furthermore, another hyperparameter arises from the delay time ¢,
defined as the time between a measurement of 6, and the update of the
gradient and GGN on the device. As discussed in the Experiments section, a
non-zero delay time is not necessarily detrimental to performance and can
in fact, improve it. Setting ¢; = ¢ would correspond a fully hybrid approach
where both the analog device used to solve the linear system and the digital
device used to evaluate the gradient have zero idle time, as depicted in Fig. 1.

Experiments

MNIST classification. We first consider the task of MNIST
classification™. For our experiments, we use a simple convolutional
neural network consisting of a convolutional layer followed by two
feedforward layers, and we digitally simulate the TNGD algorithm (see
Supplementary Material). The goal of these experiments is twofold: (1) to
compare the estimated performance per runtime of TNGD against
popular first-order optimizers such as Adam, and (2) to provide some
insights on other features of TNGD, such as its performance as a function
of the analog runtime # as well as its asynchronous execution as a function
of the delay time .

In Fig. 3(a), the training and test losses as a function of runtime for both
Adam (measured) and TNGD (estimated) are presented. To estimate the
TNGD runtime, we took into account results for its runtime per iteration as
presented in the previous section, finding an overall 2 x runtime per
iteration with respect to Adam for this problem on an A100 GPU. One can
see from the figure that even while taking into account the difference in
runtime per iteration, TNGD still outperforms Adam, especially at the initial
stages of the optimization. Interestingly, it also generalizes better for the
considered experimental setup. In Fig.3(b), the training and test accuracies
are shown. We again see TNGD largely outperforming Adam, reaching the
same training accuracy orders of magnitude faster, while also displaying a
better test accuracy. These results are reminiscent of prior work on NGD*,

npj Unconventional Computing| (2026)3:5

www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

Fig. 2 | Runtime per iteration of second-order
optimizers considered in this paper. a The run-
times per iteration are compared for NGD, NGD-
CG, NGD-Woodbury, and TNGD (estimated) for
various N. Here, the convolutional network we
applied to MNIST is used and the dimension of the
hidden layer is varied to vary N for fixed d, = 20.

b The same comparison is shown for various values
of d,. The same network is used and d, is varied (this
also has the effect of varying N, see Supplementary
Material). Error bars are displayed as shaded area
but are smaller than the data markers.

101_

1009

1075

Runtime per iteration (s)

1072_

4 g
== O(N?) 10" oo™
— o)

10°4

—e— NGD

—e— NGD-CG

—8— NGD-Woodbury
TNGD

1071_

10724

101

~
oo
N~

Fig. 3 | Performance comparison of Adam and
TNGD (estimated) on MNIST classification.

a Training (dashed lines) and test loss (solid lines)
for Adam (darker colors) and TNGD (lighter colors)
are plotted against runtime (measured for Adam,
and estimated for TNGD from the timing model
described in the computational complexity section).
Shaded areas are standard deviations over five ran-
dom seeds. Note that Adam includes adaptive
averaging of first and second moment estimates with
(B1> B2) = (0.9, 0.999), while TNGD does not. b 1 —
Accuracy for training and test sets.

Loss

0.20 <

N == Adam (train)
= Adam (test)

\ == TNGD (train)

0.151 \\ TNGD (test)

&
g
8
=
—I(-

0.05 1 = |

N

: : : 0.00 : i ——— T

107! 10° 10! 10! 10° 10!

(2)

Runtime (s)

Runtime (s)

however, here the batch size is smaller than in other works, indicating that
even a noisy GGN matrix improves the optimization.

As mentioned previously, the continuous-time nature of TNGD allows
one to interpolate smoothly between first- (£ = 0) and second- (¢ =) order
optimization, with a given optimizer choice (whether the optimizer update
rule is that of SGD or that of Adam as described in Alg. 1). In Fig. 4(a), the
trainingloss vs. iterations is shown for various analog dynamics times. These
results clearly demonstrate the effect mentioned above, where increasing the
analog runtime improves performance continuously until it approaches that
of exact NGD for t ~ 507 for time constant of the system 1. In Fig. 4(b), the
same quantity is shown for a fixed analog dynamics time ¢, and varying delay
times t,. This leads to a quadratic approximation of the objective function
that is inaccurate (since the GGN and gradients are calculated for para-
meters different than the value around which the objective function is
approximated). However, this results in an improved performance, even for
a small delay time. A likely explanation of this result is that the state of the
device retains information about the curvature of the previous quadratic
approximation, while being subject to the updated quadratic approxima-
tion. This effect propagates across iterations which is reminiscent of
momentum.

Language model fine-tuning. In this section, we show how thermo-
dynamic NGD may be applied to language modeling tasks, in more
practically relevant settings than MNIST classification. We consider the
DistilBert model”, which we fine-tune on the Stanford question-
answering dataset (SQuaD)”, a common dataset to evaluate model
comprehension of technical domains through extractive question-
answering. As is commonly performed when fine-tuning, we apply a

low-rank adaptation™ to the model, which reduces its trainable para-
meters (details about this procedure are in the Supplementary Material)
to a manageable amount (75k here) for limited compute resources.

Figure 5 (a) displays a comparison of the training loss for different
optimizers. The bare TNGD (as used in the previous section) shows a worse
performance than Adam in this setting. However, a hybrid approach,
TNGD-Adam, where the natural gradient estimate is used in conjunction
with the Adam update rule gives the best performance (this is explained in
Methods). One possible explanation for this result is that there are two pre-
conditionings of the gradient for TNGD-Adam: the first comes from the
natural gradient, which incorporates curvature information, and the second
comes from the Adam update rule, which acts as a signal-noise ratio as
explained in ref. 2, which further adjusts the natural gradient values. In Fig.
5(b), we show that the same results as in the previous section apply to
TNGD-Adam, where increasing the analog runtime boosts performance.
Therefore, the analog runtime in TNGD may be viewed as a resource in this
sense, that is, computationally very cheap (as time constants can be engi-
neered to be very small).

Discussion

We first discuss practical considerations and limitations of the proposed
hybrid approach. The practical impact of our work relies on the future
availability of analog thermodynamic computers, such as a scaled up version
of the system in ref. 21. We provide a circuit diagram of a potential ther-
modynamic computer in the Supplementary Material. Such computers can
employ standard electrical components and leverage CMOS-based fabri-
cation infrastructure, and hence are likely straightforward to scale up,
although that remains to be demonstrated.

npj Unconventional Computing| (2026)3:5

www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

Fig. 4 | Training loss vs. iterations for varying —_— =5 —
analog dynamics times. a The training loss is shown 0.8 —_— t—10r 0.8 — =027
for NGD (dashed line) and for TNGD with various
analog dynamics times ¢ (solid lines). b The training
loss is shown for NGD (dashed line) and for TNGD " "
with fixed analog dynamics time ¢ = 57 and varying & 067 IS 0.61
delay times ¢, (solid lines). The delay appears to have N e
a momentum effect, which can even lead to TNGD = =
outperforming exact NGD for certain analog 'z 0.41 'z 0.4
dynamics and delay times. Shaded areas are stan- & &
dard deviations over five random seeds.

0.2 1 0.2 1

10° 10! 102 10° 10! 102
(a) Iterations (b) Iterations

Fig. 5 | Training loss vs. iterations for QA fine-
tuning. a Comparison of the performance per
iteration of TNGD, Adam, and TNGD-Adam,
where the latter uses the natural gradient estimate in
conjunction with the Adam update rule with (84, 8,) 81
= (0, 0). b Performance of the TNGD-Adam opti-
mizer for various analog dynamics times. Similar to
Fig. 4, the performance improves as t grows.

(a)

Training loss
D
.

= TNGD
= Adam
TNGD-Adam S -

(b)

= TNGD-Adam, t = 0.17
= TNGD-Adam, t = 0.27
TNGD-Adam, ¢t = 0.47

50 75
Iterations

100 0 2 50 75
Iterations

100

Analog computers are inherently subject to errors. The main sources
of such errors in the analog thermodynamic system are (i) limited
resolution of electrical components and ADC/DAC conversions, which
perturb the matrix inverted in the NGD update; (ii) component toler-
ances due to the fabrication process; (iii) thermal and other electrical
noise sources, such as power fluctuations or external interference; and
(iv) numerical inaccuracies in the hybrid digital-analog loop, which may
accumulate over iterations, as the accuracy of the solution depends on the
resolution of physical components and the analog-to-digital conversions.
In the case of analog thermodynamic computers, errors of the type (i) and
(ii) manifest as perturbations to the matrix inverted in the NGD update
(4), thereby introducing inaccuracies in the natural gradient estimate.
These forms of error have been extensively characterized in ref. 22 for the
type of circuit presented here, where a theoretically justified averaging
technique was also proposed as a mitigation strategy. Moreover, the
impact of limited precision on convergence of related second-order
methods such as K-FAC has been studied in ref. 35, and found to only
significantly affect convergence for resolutions below roughly 8 bits for
both the input (coming from component resolution) and the output
(coming from ADC resolution). We further note that training-based
applications are expected to tolerate precision-related errors, in line with
a growing body of work showing that very low-precision inference™ and
training” remain effective. A key feature of thermodynamic computers is
that stochastic fluctuations in resistor voltages, as described by Eq. C1, do
not alter the stationary properties of the system. These fluctuations only
increase the variance of voltages, which can be mitigated by extending the
averaging time for the natural gradient estimate. The effect of such noise
on convergence when using a single sample is shown in the

Supplementary Material, where thermal noise has only a slight impact on
loss at realistic component and temperature values.

We have numerically tested TNGD for a small subset of potential tasks,
such as MNIST classification and DistilBert fine-tuning on the SQuaD
dataset, for a small number of epochs. Hence, seeing if the advantage we
observe for TNGD also holds for other applications is an important direc-
tion. Most prominently, we would be interested in the performance of the
hybrid algorithm as the complexity of the model or amount of data
increases. However, we have strong confidence that the approach would
perform well and it’s benefits even amplified in this regime due to the
canonical preconditioning provided the dense Fisher information matrix
which is backed up with established theory"® combined with the favorable
scaling of our algorithm, Table 1.

In summary, this work introduced Thermodynamic Natural Gradient
Descent (TNGD), a hybrid digital-analog algorithm that leverages the
thermodynamic properties of an analog system to efficiently perform
second-order optimization. TNGD greatly reduces the computational
overhead typically associated with second-order methods for arbitrary
model architectures. Our numerical results on MNIST classification and
language model fine-tuning tasks demonstrate that TNGD outperforms
state-of-the-art first-order methods, such as Adam, and provides large
speedups over other second-order optimizers. This suggests a promising
future for second-order methods when integrated with specialized hardware.

Looking forward, our research stimulates further investigation into
TNGD, particularly with enhancements such as averaging techniques and
moving averages. Extensions to approximate second-order methods such as
K-FAC may also be possible. Moreover, the principles of thermodynamic
computing could inspire new algorithms for Bayesian filtering. In addition,

npj Unconventional Computing| (2026)3:5

www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

natural gradient descent techniques can be employed under a variety of
learning rules, where TNGD could be exploited””. While the current impact
of our work relies on the development and availability of large-scale analog
thermodynamic computers, the theoretical and empirical advantages pre-
sented here underscore the potential of co-designing algorithms and
hardware to overcome the limitations of conventional digital approaches.

Methods

Natural gradient descent

We have considered a generic supervised learning setting, where the goal is
to minimize an objective function defined as:

1
U0) =1 D L. fo)), ©)

D (x,y)eD

where L(y, f4(x)) € R is aloss function, fo(x) is the forward function that is
parametrized by € RY. These functions depend on input data and labels
(x,y) € D, with D a given training dataset. Viewed through the lens of
statistics, minimizing the objective function is analogous to minimizing the
Kullback-Leibler (KL) divergence from the target joint distribution g(x, y) to
the learned distribution p(x, y|6)°. A straightforward way to optimize £(6) is
to follow the direction of steepest descent, defined by the negative gradient —
V ¢, defined as:

—-V/ 1

—— = lim — arg min 40 + d), 10

[RZI e ik (10
with || - || the Euclidean norm. The natural gradient, on the other hand can

be defined as the direction of steepest descent with respect to the KL
divergence defined as:

y|0+d
KL(p(x, 716 + d)l|p(x, y16)) = / / P, Y10+ d) log(%> dxd

(11)
ref. 38. One may then Taylor-expand this divergence as
1
KL(p(x,y16 + d)lIp(x, y10)) = EdTFd +O(d), (12)
where F is the Fisher information matrix® (or the Fisher), defined as:
F = B0V logp(x, yI6)V log p(x, y16)] (13)
The natural gradient is then simply defined as
g =F'vio). (14)
For the NGD optimizer, the update rule is then given by:
01 = 6, — nF~'VL, (15)

with # a learning rate. In practice, computing the Fisher information is not
always feasible because one must have access to the density p(x, y|6). A
quantity that is always possible (and relatively cheap) to compute thanks to
auto-differentiation is the empirical Fisher information matrix, defined as:

1
F=J" = : Z V log p(ylx, O)V log p(y|x, 0) T,
(x,y)eS

(16)

where log p(y|x, 0) = —L(y, f y(x)), |S| = b is the batch size and S C D.
The Jacobian matrix J is defined as

1

J = JE[V log p(y,|x,,0), Viog p(y,1x,,0), ..., Viegp(y,lx,,)]

Note that the squared gradient appearing in the second moment estimate of
the Adam optimizer” is the diagonal of the empirical Fisher matrix. Another
approximation to the Fisher matrix is the generalized Gauss-Newton
(GGN) matrix, defined as:

1
G=]fHL]fT =3 Z]}xw HE)]}xy)T’
(x,y)eS

(17)

where |) s the Jacobian of fy(x) with respect to @ and H (Lx’y) is the Hessian
of L(y, z) with respect to z evaluated at z = fy(x). Jsis a bd, x N matrix, and Hy
is a bd, x bd, matrix, where d, is the output dimension of z = fyg(x) and N is
the number of parameters (N also depends on d,, where for deep networks it
is a weak dependence).

For loss functions of the exponential family (with natural parameter z),
the GGN matches the true Fisher matrix’. In addition, we have observed
better convergence with the GGN than with the empirical Fisher (as in other
works such as Refs. 24,39, where better convergence than with the Hessian is
also observed). Therefore, we will consider the GGN in what follows. Note
that the methods we introduce in this work apply to any second-order
optimization algorithm with a positive semi-definite curvature matrix (by
curvature matrix, we mean any matrix capturing information about the loss
landscape). In particular, it applies most efficiently to matrices constructed
as outer products of rectangular matrices (such as the empirical Fisher and
the GGN) as explained below.

Fast matrix vector products
The linear system appearing in (3) can be solved using the conjugate gradient
(CG) method*, which will be referred to as NGD-CG in what follows. In fact,
when £ is parametrized by a neural network, the GGN-vector product Gv
involved in the conjugate gradient algorithm may be evaluated in runtime
O(bN) thanks to fast Jacobian-vector products® (JVPs). This approach also
enables one to not explicitly construct the Fisher matrix, thus also avoiding a
O(bd,N?) runtime cost in computing it and a O(N?) memory cost in storing it.
The efficiency of this approach depends on the number of CG iterations
required to obtain good performance. Importantly, fully reaching con-
vergence (which takes in 4/x steps, with x the condition number of F) is not
required to obtain competitive performance®”. Crucially, due to the
sequential nature of the algorithm, the CG iterations cannot be parallelized.
In practice, since reaching convergence is computationally expensive,
one generally stops the CG algorithm after a set number of iterations.
Because of the way the step size is adapted in CG, we have observed that the
solution after k steps xy is not necessarily closer to the true solution than the
initial guess x, in particular for ill-conditioned problems, which can make
NGD-CG difficult to use.

NGD with the Woodbury identity

In the machine learning setting, it is often the case that b < N (and d, < N).
This means that the curvature matrix is low-rank and the linear system to
solve is underdetermined. To mitigate this issue, the Fisher matrix may be
dampened as F + AL In that case, the Woodbury identity may be used to
obtain the inverse Fisher vector-product F'v appearing in the NGD update.
We have:

F= UV+)L]I,withU:]f,V:HL]fT (18)

F'=A'T-12U0+A"'VU) 'V (Woodbury) (19
—1 -1 -2 -1 -1

Fly=21ly -2 ud+A1'vu)y v (20)

This is included in*’, and can be competitive with NGD-CG when the
batch size b and output dimension d, are much smaller than the number of
trainable parameters N. Here one must construct the V matrix, which has

npj Unconventional Computing| (2026)3:5

www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

runtime O(dﬁbN) (since Hy, is block-diagonal), and invert (I + A~ VU)
which is O(b°d?). While the batch size typically remains small, the value of
d, can make this inversion intractable. For example, in many language-
model tasks, d, ~ O(10) is the vocabulary size.

TNGD algorithm

In Alg. 1 we provide the steps for the TNGD algorithm. This algorithm may
be used in conjunction with various digital optimizers (such as SGD or
Adam). The thermodynamic linear solver (TLS) is performed by an analog
thermodynamic computer whose physical implementation is described in
the Supplementary Material. The TLS takes as inputs the Jacobian Jg, the
Hessian Hj, the gradient gi and an initial point x, (that can be reset at each
iteration, or not, in which case t; > 0).

Algorithm 1. Thermodynamic Natural Gradient Descent
Require: n >0
Initialize 6,
go < VUO,)
optimizer « SGD(y,) or Adam(y, 1, f2)
while k = n do
X Yk € next batch
& < V U0k xi Y1)
S < TLS(]vaL’ b= g% = gk_1)
optimizer.update(0;., g;)
kek+1
end while

Data availability

All data reflected in our results was generated in a way that is clear from the
text, and the results can be reproduced by simulating the algorithms as they
are described. No external data was used. Results from specific simulations
are available upon request.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.

Received: 13 January 2025; Accepted: 7 December 2025;
Published online: 27 January 2026

References

1. Khan, H. N., Hounshell, D. A. & Fuchs, E. R. Science and research
policy at the end of Moore’s law. Nat. Electron. 1, 14-21 (2018).

2. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning
Representations http://arxiv.org/abs/1412.6980 (ICLR, 2015).

3. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In
Proceedings of the 7th International Conference on Learning
Representations https://openreview.net/forum?id=Bkg6RiCqY7
(ICLR, 2019).

4. Amari, S.-I. Natural gradient works efficiently in learning. Neural
Comput. 10, 251-276 (1998).

5. Martens, J. New insights and perspectives on the natural gradient
method. J. Mach. Learn. Res. 21, 5776-5851 (2020).

6. Martens, J. & Grosse, R. Optimizing neural networks with KRonecker-
factored approximate curvature. In International Conference On
Machine Learning, 2408-2417 https://proceedings.mlr.press/v37/
martens15.html (PMLR, 2015).

7. Lin, W. et al. Structured inverse-free natural gradient: Memory-
efficient & numerically-stable kfac for large neural nets. arXiv
preprint arXiv:2312.05705 https://arxiv.org/abs/2312.05705
(2023).

8. Eschenhagen, R., Immer, A., Turner, R. Schneider, F. & Hennig, P.
Kronecker-factored approximate curvature for modern neural

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

network architectures. In Advances in Neural Information Processing
Systems, vol. 36 https://proceedings.neurips.cc/paper_files/paper/
2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.
pdf (2023).

Pauloski, J. G., Zhang, Z., Huang, L., Xu, W. & Foster, I. T.
Convolutional neural network training with distributed k-fac. In SC20:
International Conference for High Performance Computing,
Networking, Storage and Analysis, 1-12 https://ieeexplore.ieee.org/
abstract/document/9355234 (IEEE, 2020).

Kim, S., Gokmen, T., Lee, H.-M. & Haensch, W. E. Analog CMOS-
based resistive processing unit for deep neural network training. In
2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), 422-425 https://ieeexplore.ieee.org/abstract/
document/8052950 (IEEE, 2017).

Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network
training using analogue memory. Nature 558, 60-67 (2018).
Cristiano, G. et al. Perspective on training fully connected networks with
resistive memories: device requirements for multiple conductances of
varying significance. J. Appl. Phys. 124, 151901 (2018).

Aguirre, F. et al. Hardware implementation of memristor-based
artificial neural networks. Nat. Commun. 15, 1974 (2024).

Conte, T. et al. Thermodynamic computing. arXiv preprint
arXiv:1911.01968 https://arxiv.org/abs/1911.01968 (2019).

Hylton, T. Thermodynamic neural network. Entropy 22, 256 (2020).
Ganesh, N. A thermodynamic treatment of intelligent systems. In 2077
IEEE International Conference on Rebooting Computing (ICRC), 1-4
(ICRC, 2017).

Coles, P. J. et al. Thermodynamic Al and the fluctuation frontier. In
2023 |EEE International Conference on Rebooting Computing (ICRC),
1-10 (IEEE, 2023).

Lipka-Bartosik, P., Perarnau-Llobet, M. & Brunner, N.
Thermodynamic computing via autonomous quantum thermal
machines. Sci. Adv. 10, eadm8792 (2024).

Aifer, M. et al. Thermodynamic linear algebra. npj Unconv. Comput. 1,
13 (2024).

Duffield, S., Aifer, M., Crooks, G., Ahle, T. & Coles, P. J. Thermodynamic
matrix exponentials and thermodynamic parallelism. Phys. Rev. Res. 7,
013147 (2025).

Melanson, D. et al. Thermodynamic computing system for Al
applications. Nat. Commun. 16 https://doi.org/10.1038/s41467-025-
59011-x (2025).

Aifer, M. et al. Error mitigation for thermodynamic computing. arXiv
preprint arXiv:2401.16231https://arxiv.org/abs/2401.16231 (2024).
Bottou, L., Curtis, F. E. & Nocedal, J. Optimization methods for large-
scale machine learning. SIAM Rev. 60, 223-311 (2018).

Martens, J. et al. Deep learning via Hessian-free optimization. InICML,
vol. 27, 735-742 https://www.cs.toronto.edu/asamir/cifar/HFO_
James.pdf (2010).

Martens, J., Ba, J. & Johnson, M. Kronecker-factored curvature
approximations for recurrent neural networks. In International
Conference on Learning Representations https://openreview.net/
pdf?id=HyMTkQZAb (2018).

Ren, Y. & Goldfarb, D. Efficient subsampled Gauss-Newton and
natural gradient methods for training neural networks. arXiv

preprint arXiv:1906.02353 https://arxiv.org/abs/1906.02353 (2019).
Gargiani, M., Zanelli, A., Diehl, M. & Hutter, F. On the promise of the
stochastic generalized Gauss-Newton method for training DNNs.
arXiv preprint arXiv:2006.02409 https://arxiv.org/abs/2006.02409
(2020).

Shen, Z., Zhang, M., Zhao, H., Yi, S. & Li, H. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 3531-3539
https://ieeexplore.ieee.org/abstract/document/9423033 (2021).
Katharopoulos, A., Vyas, A., Pappas, N. & Fleuret, F. Transformers are
RNNS: Fast autoregressive transformers with linear attention. In

npj Unconventional Computing| (2026)3:5

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://arxiv.org/abs/2312.05705
https://arxiv.org/abs/2312.05705
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://ieeexplore.ieee.org/abstract/document/9355234
https://ieeexplore.ieee.org/abstract/document/9355234
https://ieeexplore.ieee.org/abstract/document/9355234
https://ieeexplore.ieee.org/abstract/document/8052950
https://ieeexplore.ieee.org/abstract/document/8052950
https://ieeexplore.ieee.org/abstract/document/8052950
https://arxiv.org/abs/1911.01968
https://arxiv.org/abs/1911.01968
https://doi.org/10.1038/s41467-025-59011-x
https://doi.org/10.1038/s41467-025-59011-x
https://doi.org/10.1038/s41467-025-59011-x
https://arxiv.org/abs/2401.16231
https://arxiv.org/abs/2401.16231
https://www.cs.toronto.edu/asamir/cifar/HFO_James.pdf
https://www.cs.toronto.edu/asamir/cifar/HFO_James.pdf
https://www.cs.toronto.edu/asamir/cifar/HFO_James.pdf
https://openreview.net/pdf?id=HyMTkQZAb
https://openreview.net/pdf?id=HyMTkQZAb
https://openreview.net/pdf?id=HyMTkQZAb
https://arxiv.org/abs/1906.02353
https://arxiv.org/abs/1906.02353
https://arxiv.org/abs/2006.02409
https://arxiv.org/abs/2006.02409
https://ieeexplore.ieee.org/abstract/document/9423033
https://ieeexplore.ieee.org/abstract/document/9423033
www.nature.com/npjunconvcomput

https://doi.org/10.1038/s44335-025-00049-x

Article

International Conference on Machine Learning, 5156-5165 https://
proceedings.mir.press/v119/katharopoulos20a.html (PMLR, 2020).

30. Wang, S., Li, B. Z., Khabsa, M., Fang, H. & Ma, H. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768
https://arxiv.org/abs/2006.04768 (2020).

31. LeCun, Y. The MNIST database of handwritten digits. http://yann.
lecun.com/exdb/mnist/ (1998).

32. Sanh, V., Debut, L., Chaumond, J. & Wolf, T. Distilbert, a distilled
version of Bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108 https://arxiv.org/abs/1910.01108 (2019).

33. Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 https://arxiv.org/abs/1606.05250 (2016).

34. Hu,E.J. etal. Lora: Low-rank adaptation of large language models. In
International Conference on Learning Representations https://
openreview.net/forum?id=nZeVKeeFYf9 (ICLR, 2022).

35. Sun, X. etal. Ultra-low precision 4-bit training of deep neural networks.
Adv. Neural Inf. Process. Syst. 33, 1796-1807 (2020).

36. Ma, S. et al. The era of 1-bit LLMs: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764 https://arxiv.org/abs/2402.
17764 (2024).

37. Shaiji, L., Suzuki, K. & Kozachkov, L. Is all learning (natural) gradient
descent? arXiv preprint arXiv:2409.16422 (2024).

38. Amari, S.-i. & Nagaoka, H. Methods of information geometry, vol. 191
https://bookstore.ams.org/mmono-191 (American Mathematical
Soc., 2000).

39. Kunstner, F., Hennig, P. & Balles, L. Limitations of the empirical Fisher
approximation for natural gradient descent. Advances in Neural
Information Processing Systems 32 https://proceedings.neurips.cc/
paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.
html (2019).

40. Bradbury, J. et al. JAX: composable transformations of Python
+NumPy programs http://github.com/google/jax (2018).

Acknowledgements
Not applicable.

Author contributions
K.D. and S.D. hold equal contribution in carrying out the experiments and
coming up with mathematical equations and proofs based on S.D.'s original

idea. K.D., S.D., M.A. derived the equations in the main text and
supplementary material. K.D., S.D, M.A., G.C and P.C. wrote the main text.
D.M. designed the hardware implementation and wrote the corresponding
supplementary material.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44335-025-00049-x.

Correspondence and requests for materials should be addressed to
Samuel Duffield.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License, which permits any
non-commercial use, sharing, distribution and reproduction inany medium or
format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence
to share adapted material derived from this article or parts of it. Theimages or
other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

© The Author(s) 2025

npj Unconventional Computing| (2026)3:5

https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2402.17764
https://bookstore.ams.org/mmono-191
https://bookstore.ams.org/mmono-191
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/46a558d97954d0692411c861cf78ef79-Abstract.html
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1038/s44335-025-00049-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjunconvcomput

	Thermodynamic natural gradient descent
	Results
	Thermodynamic natural gradient descent
	Computational complexity and performance
	Analog dynamics time t and delay time td
	Experiments
	MNIST classification
	Language model fine-tuning

	Discussion
	Methods
	Natural gradient descent
	Fast matrix vector products
	NGD with the Woodbury identity
	TNGD algorithm

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

