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Abstract – We show that the total entropy production of a strongly coupled bipartite system
can be partitioned into components, which can be used to define local versions of the Second
Law that are valid without the usual idealization of weak coupling. The key insight is that causal
intervention offers a way to identify those parts of the entropy production that result from feedback
between the subsystems. All central relations describing the thermodynamics of strongly coupled
systems follow from this observation in a few lines.
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Rudolf Clausius’ famous statement of the “second fun-
damental theorem in the mechanical theory of heat”
is that “The entropy of the universe tends to a maxi-
mum” [1]. Although this proclamation has withstood the
test of time, in practice measuring the entropy of the entire
universe is difficult. As an alternative we can apply the
Second Law to any system isolated from outside interac-
tions (a Universe unto itself), as, for example, in Planck’s
statement of the Second Law: “Every process occurring
in nature . . . the sum of the entropies of all bodies taking
part in the process is increased” [2]. Of course, perfectly
isolating any system or collection of systems from outside
influence is also difficult.

Over the last 150 years thermodynamics has progressed
by adopting various idealizations which allow us to iso-
late and measure that part of the total universal entropy
change that is relevant to the behavior of the system at
hand. These idealizations include heat reservoirs, work
sources, and measurement devices [3,4]. More recently
information engines (“Maxwell demons” [5,6]) have been
added to the canon to represent idealized computational
resources [4,7–10].

In this paper, we demonstrate that we do not need, in
principle, to resort to these idealizations. We show how
the thermodynamics of strongly coupled systems follow
in a straightforward manner from a causal decomposition
of their dynamics. This unifying perspective greatly sim-
plifies the treatment, allowing us to assimilate the large
recent literature on the thermodynamics of coupled sys-
tems in a few short pages. Looking at the problem in the

right way then makes it easy to show that conditional and
marginalized versions of the Second Law hold locally, even
when the system of interest is strongly coupled to other
driven, non-equilibrium systems.

Partitions of entropy. – Before considering the par-
titioning of dissipation, let us recall the partitioning of
entropy in information theory. Suppose we have a pair of
interacting systems X and Y, whose states are x and y,
respectively. The joint entropy of the total system is

SX,Y = −
∑

x,y

p(x, y) ln p(x, y). (1)

The marginal entropy SX of system X is the entropy of the
marginal distribution, p(x), obtained by summing over the
states of the other system,

SX = −
∑

x

p(x) ln p(x), p(x) =
∑

y

p(x, y). (2)

The conditional entropy,

SX|Y× = SX,Y −SY = −
∑

y

p(y)
∑

x

p(x|y) ln p(x|y), (3)

is the average entropy of system X given that we observe
the state of system Y.

It is also useful to define the pointwise (specific) en-
tropies of individual realizations of the system, whose
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ensemble averages are the entropies defined previously:

s(x, y) = − ln p(x, y) = s(x|y) + s(y), (4a)
s(x) = − ln p(x), (4b)

s(x|y) = − ln p(x|y). (4c)

The negative log-probability, eq. (4b), has been called
“surprisal” in information theory [11].

Dissipation. – Let us now consider dynamical trajec-
tories of a bipartite system. We assume that each side of
the system is coupled to idealized constant temperature
heat reservoirs, with reciprocal temperature β = 1/kBT ,
and idealized work sources. We label the controlled pa-
rameters of the work source coupled to subsystem X by u,
and those corresponding to subsystem Y by v. Although
the coupling to the heat baths and work sources are ide-
alized, the two subsystems, X and Y, can be strongly cou-
pled to each other.

A core tenet of non-equilibrium thermodynamics is the
detailed fluctuation theorem which equates the entropy
production (or dissipation) Σ to the log ratio of the prob-
abilities of forward and time-reversed trajectories [12–14]:

ΣX,Y = ln
p(→x,

→
y ;→u,

→
v )

p(←x,
←
y ;←u,

←
v )

. (5)

Dissipation is a consequence of breaking time-reversal
symmetry. Here, →x and →

y are trajectories of systems
X and Y, respectively, generated while the systems are
driven by the external protocols →u and →

v , respectively,
which are fixed functions of time. The trajectory ←x de-
notes →x in reverse, running time backwards. Consequently
p(→x,

→
y ;→u,

→
v ) is the probability of the forward time tra-

jectories under forward time dynamics, given the forward
time protocols, whereas p(←x,

←
y ;←u,

←
v ) is the probability of

the conjugate time-reversed trajectories, given the time-
reversed driving. We use a semicolon before the controls
to emphasize that the protocols are fixed parameters. For
notational simplicity we typically suppress the explicit
dependence of the dynamics on the protocols, writing
p(←x,

←
y ) for p(←x,

←
y ;←u,

←
v ), for example.

Suppose we only observe the behavior of one of the sub-
systems. We can still define marginal trajectory probabil-
ities and the marginal entropy production,

ΣX = ln
p(→x)
p(←x)

, (6)

and, by similar reasoning, the conditional entropy
production,

ΣX|Y = ln
p(→x|→y )
p(←x|←y )

= ln
p(→x,

→
y )

p(←x,
←
y )

p(←y )
p(→y )

= ΣX,Y − ΣY. (7)

Thus, we can partition the total dissipation into local com-
ponents. However, in order to make these definitions of
marginal and conditional dissipation concrete we have to
explore their physical meaning.

Dynamics. – The first fluctuation theorems for sys-
tems driven far from thermodynamic equilibrium were
derived under the assumption that a system of interest
is driven out of thermodynamic equilibrium by a time-
dependent, but fixed, protocol (often implicitly assumed
to be applied by an experimenter) [12,13]. Later, two ex-
tended scenarios were explored: i) the protocol is a func-
tion of the state of the system [7], and ii) the protocol itself
is stochastic [15]. In the context of the first extension, the
phrase “feedback” was employed, to denote that the sys-
tem feeds back onto the protocol. Put together, the two
extensions result in a strongly coupled bipartite system,
as treated in this paper. The situation is now symmetric,
both subsystems are feeding back onto each other.

To make the discussion unambiguous, we adopt a spe-
cific model of the intersystem dynamics. We could opt
for classical mechanics [4], or coupled Langevin dynam-
ics [16], or a continuous time Markov process [17]. But
we feel the discussion is most transparent when the dy-
namics are represented by coupled, discrete time Markov
chains. The dynamics of the joint system are assumed to
be Markov, and the dynamics of each subsystem are con-
ditionally Markov given the state of the other subsystem.
The marginal dynamics are not Markov when we do not
know the hidden dynamics of the other subsystem.

We can use a causal diagram [18–20] to illustrate the
time label conventions for the trajectories of the system
and control parameters. First one subsystem updates,
then the other, and so on, until time step τ (set to 3 in
the following diagram):

u1 u2 u3

x0 x1 x2 x3

y0 y1 y2 y3

v0 v1 v2

Horizontal arrows indicate time evolution, and the other
connections indicate causation, where the dynamics of one
subsystem are influenced by the external parameters and
the current state of the other subsystem. For the corre-
sponding time-reversed trajectory the horizontal arrows
flip, but the vertical connections remain unchanged:

ũ1 ũ2 ũ3

x̃0 x̃1 x̃2 x̃3

ỹ0 ỹ1 ỹ2 ỹ3

ṽ0 ṽ1 ṽ2

Here the tilde labels the time-reversed configurations of
the time-reversed trajectory, x̃t.

The probability for the joint trajectory is related to to-
tal dissipation via the fluctuation theorem, eq. (5). This
joint probability naturally splits into two products, each
of individual transition probabilities for the respective
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subsystem. That is in forward time:

p(→x,
→
y |x0, y0) =

p(y1|y0, x0)p(x1|x0, y1)p(y2|y1, x1)p(x2|x1, y2)
. . . p(yτ |yτ−1, xτ−1)p(xτ |xτ−1, yτ )

=
τ−1∏

t=0

p(yt+1|yt, xt) ×
τ−1∏

t=0

p(xt+1|xt, yt+1)

≡ q(→y ;→x, y0) × q(→x;→y , x0). (8)

Here, p(xt+1|xt, yt+1) is the probability of jumping from
state xt to xt+1 given the current state of the other sub-
system (and knowledge of the driving protocol). The ex-
pressions q(→y ;→x, y0) and q(→x;→y , x0) denote the trajectory
probabilities of one system given a fixed trajectory of
the other system. Once again we set off parameters that
are fixed (rather than observed and coevolving) with a
semicolon. These probabilities are not the same as the
conditional distributions p(→x|→y , y0), which describe the
original process where both systems coevolve and influ-
ence each other. We have chosen to use a different symbol
(q) for these trajectory probabilities to make this distinc-
tion abundantly clear. The dynamics corresponding to the
decomposition can be represented by the following pair of
diagrams:

u1 u2 u3

x0 x1 x2 x3

y1 y2 y3
×

x0 x1 x2

y0 y1 y2 y3

v0 v1 v2

The decomposition of the joint probability in eq. (8) is re-
ferred to as a causal intervention [19]. We emphasize that
this decomposition is central to disentangling the direct
and indirect effects of intersystem coupling.

In reverse time, we have a similar decomposition,

p(←x,
←
y |x̃τ , ỹτ ) =

τ−1∏

t=0

p(x̃t|x̃t+1, ỹt+1) ×
τ−1∏

t=0

p(ỹt|x̃t, ỹt+1)

≡ q(←x;←y , x̃τ ) × q(←y ;←x, ỹτ ), (9)

which is represented by the following pair of diagrams:

ũ1 ũ2 ũ3

x̃0 x̃1 x̃2 x̃3

ỹ1 ỹ2 ỹ3
×

x̃0 x̃1 x̃2

ỹ0 ỹ1 ỹ2 ỹ3

ṽ0 ṽ1 ṽ2

This makes it clear that to calculate dissipation in the
presence of feedback, we cannot simply replace the coupled

reverse time process probability, p(←x|←y ) in eq. (7), by its
uncoupled counterpart, q(←x;←y ) = q(←x;←y , x̃τ )p(x̃τ ).

Detailed fluctuation theorem. – For the complete
system, the total pathwise entropy production consists of
the change in the entropy of the environment (due to
the flow of heat from the baths) and a boundary term
∆sX,Y [12–14],

ΣX,Y = ∆sX,Y − βQX,Y. (10)

This boundary term is the difference in pointwise entropy
between the initial configurations of the forward and re-
verse trajectories,

∆sX,Y = − ln p(x̃τ , ỹτ ) + ln p(x0, y0). (11)

Typically, we either assume that the system is initially in
thermodynamic equilibrium for both the forward and re-
versed processes (as we do for the Jarzynski equality [21]),
or we assume that the final ensemble of the forward pro-
cess is the same as the initial, time-reversed probabilities
of the reversed process, p(x̃τ , ỹτ ) = p(xτ , yτ ) [14,22]. In
general, the initial ensembles need not have any simple
relationship: for instance, we might be observing a short
segment of a much longer driven process.

The energy E of the total system can be written as the
two subsystem Hamiltonians plus an interaction term,

EX,Y(x, y; u, v) = EX(x; u) + EY(y; v) + Eint
X:Y(x, y). (12)

The external baths and control parameters couple to the
internal states of each system separately and do not couple
directly to the interaction energy, which ensures that the
source of energy flowing into the system is unambiguous.

The heat is the flow of energy into the system due to
interactions with the bath [12,21,23–25]. We can split the
total heat into the heat flow for each of the two subsys-
tems, QX,Y = QX + QY,

QX =
τ−1∑

t=0

[
EX(xt+1, ut+1) + Eint

X:Y(xt+1, yt+1)

−EX(xt, ut+1) − Eint
X:Y(xt, yt+1)

]
, (13a)

QY =
τ−1∑

t=0

[
EY(yt+1, vt) + Eint

X:Y(xt, yt+1)

−EY(yt, vt) − Eint
X:Y(xt, yt)

]
. (13b)

Heat flow is the change in energy when the state of a
system updates with fixed configurations of the connected
systems. Thus, the heat flow into subsystem X involves
both a flow of energy from the bath, and a flow of energy
mediated by the interacting subsystem Y. Conversely for
system Y.

Local detailed fluctuation theorems. – If the tra-
jectory of system Y is fixed, then its dynamics act as an
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idealized work source to system X, and we can write down
a standard fluctuation theorem for system X alone,

ln
q(→x;→y , x0)
q(←x;←y , x̃τ )

p(x0)
p(x̃τ )

= ∆sX − βQX. (14)

This is the fluctuation theorem we would obtain were there
no feedback from X to Y1. With feedback, eq. (14) no
longer correctly describes the entropy production of sub-
system X. Assuming that it does, leads to apparent con-
tradictions that would imply that the Second Law has to
be modified [7].

What is the quantity that correctly describes the en-
tropy production of subsystem X while coupled to the
coevolving subsystem Y? The answer depends on what
information the observer has at hand. If the coevolving
state of subsystem Y can be observed at all times, then
the conditional entropy production, ΣX|Y, eq. (7), best
describes the dissipation encountered by system X alone.
In the absence of this knowledge, we have to integrate
out the state-space trajectories of Y, and therefore we can
make statements only about the marginal dissipation, ΣX,
eq. (6). While we have no guarantee that the average of
eq. (14) is positive when there is feedback between the sys-
tems, we do know that both the marginal and the condi-
tional entropy production obey the Second Law, because
their averages can be written as Kullback-Leibler diver-
gences [26–29], which means that they are non-negative
quantities.

We can now write the marginal dissipation using the
causal decompositions, eqs. (8) and (9):

ΣX = ln
p(→x)
p(←x)

= ln
p(→x,

→
y )

p(←x,
←
y )

p(←y |←x)
p(→y |→x)

(15a)

= ln
p(→x,

→
y |x0, y0)

p(←x,
←
y |x̃τ , ỹτ )

p(x0, y0)
p(x̃τ , ỹτ )

p(←y |←x, ỹτ )
p(→y |→x, y0)

p(ỹτ |x̃τ )
p(y0|x0)

(15b)

= ln
q(→y ;→x, y0)
q(←y ;←x, ỹτ )

q(→x;→y , x0)
q(←x;←y , x̃τ )

p(←y |←x, ỹτ )
p(→y |→x, y0)

p(x0)
p(x̃τ )

(15c)

= ln
p(x0)
p(x̃τ )

+ ln
q(→x;→y , x0)
q(←x;←y , x̃τ )

(15d)

−
(

ln
p(→y |→x, y0)
p(←y |←x, ỹτ )

− ln
q(→y ;→x, y0)
q(←y ;←x, ỹτ )

)

= ∆sX − βQX − Σtrn
X . (15e)

Here, we have written down in eq. (15a) the definition
of the marginal dissipation (see eq. (6)), and expanded
it using the definition of conditional probability p(a|b) =
p(a, b)/p(b). Then we split out the initial state probabili-
ties in eq. (15b), and in eq. (15c) split the probability of the
joint trajectory into components without feedback (see (8)
and (9)). In eq. (15d) we gather the entropy production

1The boundary term ∆sX = − ln p(x̃τ )+ln p(x0) is the pointwise
entropy difference between the initial configurations of the forward
and reverse trajectories of system X alone.

into 3 terms. The first two terms describe the entropy
production of subsystem X if there were no feedback from
X to Y (eq. (14)). The last term characterizes the ther-
modynamic effects of feedback. We identify this term as
the transferred dissipation,

Σtrn
X = ln

p(→y |→x, y0)
p(←y |←x, ỹτ )

− ln
q(→y ;→x, y0)
q(←y ;←x, ỹτ )

. (16)

It consists of the difference between subsystem Y’s con-
ditional entropy production with feedback, compared to
without feedback. The subscript indicates the energy sink,
the subsystem into which energy is flowing. If system Y
did not influence the behavior of system X then q(→y ;→x, y0)
would equal p(→y |→x, y0) (and similarly for the time-reversed
components), and the transferred dissipation would be
zero.

With this insight, we can now appreciate the fact that
causal intervention, and decomposition of the joint prob-
ability of the system as a whole into disconnected parts in
both forward and reverse time (eqs. (8) and (9)) is crucial
in thinking about feedback systems, because it allows us
to decompose the entropy production, revealing the con-
tribution due to feedback.

To summarize, the menagerie of local detailed fluctu-
ation theorems (eqs. (5)–(7)) can be expressed solely in
terms of differences in local pointwise entropies, eq. (4),
the heat flow, eq. (13), and the transferred dissipation,

ΣX,Y = ∆sX,Y − βQX − βQY, (17a)
ΣX = ∆sX − βQX − Σtrn

X , (17b)
ΣX|Y = ∆sX|Y − βQX + Σtrn

Y . (17c)

The joint entropy production ΣX,Y is the usual dissipation
of the entire system. The marginal entropy production
ΣX is the appropriate dissipation to consider if we cannot
observe the dynamics of system Y, while the conditional
entropy production ΣX|Y should be considered when the
dynamics of Y can be observed. This conditional entropy
production contains a transferred dissipation from subsys-
tem X to subsystem Y.

Transferred dissipation. – Transferred dissipation
can be further decomposed into time-forward and time-
reversed components (analogous to the decomposition of
the entropy production rate into the Shannon entropy rate
and a time-reversed entropy rate [26]),

Σtrn
Y = ln

p(→x|→y , x0)
q(→x;→y , x0)

− ln
p(←x|←y , x̃τ )
q(←x;←y , x̃τ )

= ln
p(→x|→y , x0)q(

→
y ;→x, y0)

p(→y ,
→
x|x0, y0)

− ln
q(←y ;←x, ỹτ )p(←x|←y , x̃τ )

p(←y ,
←
x|x̃τ , ỹτ )

= ln
q(→y ;→x, y0)
p(→y |y0)

− ln
q(←y ;←x, ỹτ )
p(←y |ỹτ )

= T→
Y

− T←
Y

. (18a)
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After some additional manipulation we recognize that
the first term is the sum of the pointwise transfer en-
tropies [30],

T→
Y

= ln

(
τ−1∏

t=0

p(yt+1|yt, xt)

)
− ln

(
τ−1∏

t=0

p(yt+1|y0:t)

)

=
τ−1∑

t=0

ln
p(yt+1|y0:t, x0:t)

p(yt+1|y0:t)
=

τ−1∑

t=0

i(yt+1 : x0:t|y0:t).

(19)

Here i(a : b|c) = ln p(a, b|c) − ln p(a|c)p(b|c) is the point-
wise conditional mutual information, and the slice nota-
tion xa:b is shorthand for the sequence xa, xa+1, . . . , xb.
Thus, T→

Y
is the total pointwise transfer entropy from X

to Y for the forward time trajectory.
Transfer entropy has been investigated as a measure of

Granger statistical causality [30–32], and has recently been
recognized as a component of the thermodynamic dissipa-
tion [20,33–37]. However, transfer entropy can only equal
the total transferred dissipation if we construe a process
with feedback only in the time-forward dynamics, but no
feedback in the time-reversed dynamics. Such time-reverse
feedback-free reference systems, first studied in refs. [7,8],
do not have a clear physical interpretation, because we
cannot turn off the coupling between subsystems only
during the time-reversed process. Therefore, we must in-
clude the time-reversed component of the transferred dis-
sipation in order to fully appreciate the thermodynamic
costs associated with interactions between subsystems.

Information engines. – An interesting idealized
limit to consider is when the interaction energy is zero
Eint

X:Y = 0, but the dynamics are still coupled. Removing
the energetic component of the interaction forces us to
carefully consider the role of information flow and compu-
tation in thermodynamics, and the relationship between
information and entropy [7–10,33,35,38–42]. Although no
energy flows between the systems, the transferred dissi-
pation can still be non-zero. From the point of view
of system X, system Y becomes a purely computational
resource (a “demon”). This resource has an irreducible
thermodynamic cost which is captured by the transferred
dissipation. Neglecting this cost leads to Maxwell’s demon
paradoxes where the Second Law appears to be violated.

Local Second Law. – We are now in a position to ex-
press the averages of the total, marginal, and conditional
dissipation by averages of the quantities we found in our
decomposition (eq. (17)). Remember that we can also
write them as Kullback-Leibler divergences, and hence
each obeys a Second Law like inequality:

〈
ΣX,Y

〉
= ∆SX,Y − β

〈
QX
〉

− β
〈
QY
〉

(20a)

=
∑

→
x ,
→
y

p(→x,
→
y ) ln

p(→x,
→
y )

p(←x,
←
y )

≥ 0,

〈
ΣX
〉

= ∆SX − β
〈
QX
〉

−
〈
Σtrn

X
〉

(20b)

=
∑

→
x

p(→x) ln
p(→x)
p(←x)

≥ 0,

〈
ΣX|Y

〉
= ∆SX|Y − β

〈
QX
〉

+
〈
Σtrn

Y
〉

(20c)

=
∑

→
y

p(→y )
∑

→
x

p(→x|→y ) ln
p(→x|→y )
p(←x|←y )

≥ 0.

Since the total dissipation is the sum of a conditional
and marginal dissipation, it follows that, on average, each
of the marginal and conditional dissipations are less than
the total dissipation, and we summarize:

〈
ΣX,Y

〉
≥
{〈

ΣX
〉
,
〈
ΣY
〉
,
〈
ΣX|Y

〉
,
〈
ΣY|X

〉}
≥ 0. (21)

This analysis shows that strongly coupled systems obey a
local Second Law of thermodynamics. Proper treatment
has to either consider the dynamics of one system alone,
and study the marginal dissipation, or account for the be-
havior of other systems directly coupled to the system of
interest, and study the conditional dissipation. In either
case the system’s average dissipation is non-negative and
less than the total dissipation. Thus, when studying small
parts of the entire Universe, we are allowed to neglect the
dissipation occurring elsewhere that is irrelevant to the
behavior of the system at hand.
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