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Abstract. In this paper, we will discuss how to compactly express the
Jarzynski identity for an open quantum system with dissipative dynamics.
In quantum dynamics we must avoid explicitly measuring the work directly,
which is tantamount to continuously monitoring the state of the system, and
instead measure the heat flow from the environment. These measurements
can be concisely represented with Hermitian map superoperators, which provide
convenient and compact representations of correlation functions and sequential
measurements of quantum systems.
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1. Introduction

When a classical system in thermal equilibrium is driven from that equilibrium by an
external perturbation, then the work of that process is related to the system’s free energy
change by Jarzynski’s equality [1]–[4].

〈
e−βW

〉
=

∫
p(W )e−βW dW = e−βΔF . (1)

Here, p(W ) is the probability distribution of work W done on the system, β = 1/kBT
is the inverse temperature T of the environment in natural units (kB is the Boltzmann
constant) and ΔF is the Helmholtz free energy change of the system. In other words, a
Boltzmann weighted average of the irreversible work recovers the equilibrium free energy
difference from an out-of-equilibrium transformation.

The generalization of the Jarzynski identity to closed system quantum dynamics is
technically straightforward [5]–[19]. The system is initially in thermal equilibrium with the
environment, but is decoupled and isolated from the environment during the perturbation
of the system. The work is then the difference in energy of the system between the
beginning and end of the experiment. However, for an system that can interact with
the environment this does not suffice, since the total change in energy of the system
ΔE = Q + W is equal to the work W applied via the time dependent perturbation
plus the flow of heat Q from the environment. Unlike for a classical system, we cannot
continuously measure the energy of the system without severely disturbing the dynamics
of the system.

Our solution to this problem is to realize that although we cannot continuously
measure the work or system energy, we can measure the heat flow from the environment [9]
without directly measuring the energy eigenstate of the system. If we assume that
the environment is large, rapidly decoheres and always remains at thermal equilibrium,
uncorrelated and unentangled with the system, then we can measure the change in energy
of the bath (i.e. −Q) without further disturbing the dynamics of the system. Essentially,
we re-express the open system quantum Jarzynski identity as

〈
e−βW

〉
=

〈
e−βEf e+βQe+βEi

〉
= e−βΔF . (2)
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In this paper we will discuss how to represent the measurement of heat flow and
the quantum Jarzynski identity using a quantum Markov dynamics to describe the
system, and Hermitian maps, generalized measurement superoperators, to represent the
measurements of heat flow.

2. Background: quantum dynamics of open systems

We are interested in the dynamics of a quantum system with a time dependent
Hamiltonian, weakly coupled to an extended, thermal environment. Let the total
Hamiltonian of the combined system be

H = HS(t) ⊗ IB + IS ⊗ HB + εH int, (3)

where IS and IB are system and bath identity operators, HS is the time dependent
Hamiltonian of the system, HB is the bath Hamiltonian, H int is the bath–system
interaction Hamiltonian and ε is a small coupling constant.

If the system Hamiltonian is time independent, the environment is in thermal
equilibrium, and in the limit that the coupling constant is small, but the dimensionality
of the environment is large, then the system relaxes to a mixed state described by the
equilibrium density matrix [20, 21]

ρeq =
e−βHS

tr e−βHS =
e−βHS

Z
= eβF−βHS

, (4)

where Z = tr exp(−βHS) is the partition function and F = −(1/β) lnZ is the Helmholtz
free energy of the system.

If we further assume that the environment rapidly decoheres with a characteristic
relaxation time short compared with the relevant bath–system interactions, then the
environment remains very near thermal equilibrium, unentangled and uncorrelated with
the system, irrespective of any perturbation applied to the system. Consequently, the
system dynamics can be described by a quantum Markov chain [22, 23, 21]

ρ(t) = S(t − 1, t) · · · S(s + 1, s + 2)S(s, s + 1)ρ(s), (5)

where each S is a quantum operation ρ′ = Sρ, a linear, trace preserving, completely
positive map of operators [24]–[27]. Any such completely positive superoperator has
operator-sum representations,

Sρ ≡
∑

α

AαρA†
α. (6)

Conversely, any operator-sum represents a completely positive superoperator. The
collection {Aα} are known as Kraus operators. The superoperator is trace preserving,
and therefore conserves probability, if

∑
α A†

αAα = I, where I is the identity operator.
In the simplest case, the dynamics of a isolated quantum system is described by a single
unitary operator U † = U−1.

We can derive a quantum operator description of the system dynamics by following
the unitary dynamics of the combined total system for a finite time and then measuring
the final state of the environment. We assume that initially the system and environment
are uncorrelated and that the initial combined state is ρS ⊗ ρB

eq, where ρB
eq is the thermal
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equilibrium density matrix of the bath.

S(s, t)ρS = trB U [ρS ⊗ ρB]U †

=
∑

f

〈bf |U
(

ρS ⊗
[
∑

i

e−βEB
i

ZB
|bi〉〈bi|

])

U †|bf 〉

=
∑

if

e−βEB
i

ZB
〈bf |U |bi〉ρS〈bi|U †|bf 〉. (7)

Here, U is the unitary evolution operator of the total system

U = T exp

(
− i

�

∫ t

s

H(τ) dτ

)
, (8)

where T is the time-ordering operator, trB is a partial trace over the bath degrees
of freedom, {EB

i } are the energy eigenvalues and {|bi〉} are the orthonormal energy
eigenvectors of the bath, and ZB is the bath partition function. For simplicity, and
without loss of generality, we assume that the bath energy states are non-degenerate.

It follows from the last line of equation (7) that the Kraus operators for this dynamics
are

Aij =
e−(1/2)βEB

i

√
ZB

〈bj |U |bi〉. (9)

In the limit of small time interval we obtain a continuous time quantum Markovian
dynamics,

ρ(t) = T exp

(∫ t

s

L(τ) dτ

)
ρ(s), (10)

where L is the Lindbladian superoperator [23, 22, 27].

3. Hermitian maps and sequential measurements

If we describe the system dynamics using quantum operations, then it proves
very convenient to describe measurements using superoperator Hermitian maps. A
measurement of a quantum system can be characterized by a collection of measurement
operators {Aα}, where

∑
α A†

αAα = I, and associated real valued measurement results, aα.
For example, the Hermitian operator H = H† of a standard von Neumann measurement
can be decomposed into a collection of eigenvalues h and orthonormal projection operators
Ph, such that H =

∑
h hPh. More generally, the measurement operators of a POVM

(positive operator valued measure) need not be projectors or orthonormal [27].
The probability of observing the αth outcome is

pα = trAαρA†
α, (11)

and the state of the system after this particular interaction is

ρ′
α =

AαρA†
α

tr AαρA†
α

. (12)
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The overall effect of the dynamics, averaging over different interactions, is a quantum
operation, equation (6).

Rather than simply representing the effect of the measurement with the appropriate
quantum operation, we can represent the effect and result of the measurement using a
Hermitian map superoperator A:

Aρ =
∑

α

aαAαρA†
α. (13)

Note that this operator-value-sum cannot, in general, be recast as an operator-sum, since
the measurement values {aα} may be negative. An operator-value-sum maps Hermitian
operators to Hermitian operators (H = H†),

[AH ]† =

[
∑

α

aαAαHA†
α

]†

= AH† = AH. (14)

Conversely, any Hermitian map has an operator-value-sum representation [28].
Hermitian maps provide a particularly compact and convenient representation of

sequential measurements and correlation functions. Let the Hermitian map A represent a
measurement at time 0, B a different measurement of the same system at time t, and let the
quantum operation St represent the system evolution between these two measurements.
The expectation value of a single measurement is

〈a〉 = trAρ =
∑

α

aα tr AαρA†
α =

∑

α

p(α)aα, (15)

and the correlation function 〈b(t)a(0)〉 can be expressed as

〈b(t)a(0)〉 = trBStAρ(0)

=
∑

αβ

aαbβ trBβ

[
St[Aαρ(0)A†

α]
]
B†

β

=
∑

αβ

p(α, β)aαbβ . (16)

Note that expressions such as trABρ, where A and B are Hermitian operators, often
appear in perturbation expansions and are frequently referred to as quantum correlation
functions. However, since AB is not in general Hermitian these expressions do not directly
represent a physical measurement.

Here we establish that, just as every Hermitian operator represents some measurement
on the Hilbert space of pure states, every Hermitian map can be associated with some
measurement on the Liouville space of mixed states. Suppose that we have already
decomposed the Hermitian map A into an operator-value-sum with values {aα} and
operators {Aα}. Probability conservation requires that

∑
α A†

αAα = I. If this condition
is not met we can supplement the Kraus operators with an additional operator whose
corresponding measurement value is zero. Note that A†

αAα is a positive operator and
consequently B†B = I − (1/c)

∑
α A†

αAα is also a positive operator provided that c is a
real number larger than the largest eigenvalue of

∑
α A†

αAα. Therefore, we can rescale
the measurement outcomes {caα} and Kraus operators {Aα/

√
c}, append the additional
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operator B with measurement outcome 0, and associate the superoperator A with the
measurement

Aρ = 0BρB† +
∑

i

caα
Aα√

c
ρ
A†

α√
c
. (17)

Note that the decomposition of a Hermitian map into an operator-value-sum
representation is not unique [27, 28].

4. Measurements of heat flow

We can now construct a Hermitian map representation of heat flow, under the assumptions
that the bath and system Hamiltonians are constant during the measurement procedure
and that the system dynamics can be described by a quantum Markov dynamics. We
construct a measurement on the total system and then project out the bath degrees of
freedom, leaving a Hermitian map superoperator that acts on the system density matrix
alone.

The full, explicit measurement is

〈
e+βQ

〉
=

h︷︸︸︷∑

if

g
︷ ︸︸ ︷
e−β(EB

f −EB
i )

f︷︸︸︷
trS

e︷︸︸︷
trB

d︷ ︸︸ ︷
[IS ⊗ |bf 〉〈bf |]

c︷︸︸︷
U

b︷ ︸︸ ︷
[IS ⊗ |bi〉〈bi|]

·
a︷ ︸︸ ︷

[ρS ⊗ ρB
eq] ·

b︷ ︸︸ ︷
[IS ⊗ |bi〉〈bi|]

c︷︸︸︷
U †

d︷ ︸︸ ︷
[IS ⊗ |bf 〉〈bf |] .

We start with a composite system consisting of the bath, initially in thermal equilibrium,
weakly coupled to the system (a). We measure the initial energy eigenstate of the bath
(b), allow the system and bath to evolve together for some time (c), and then measure
the final energy eigenstate of the bath (d). The trace over the bath degrees of freedom
(e) yields the final, unnormalized system density matrix, whose trace in turn (f) gives
the probability of observing the given initial and final bath energy eigenstates. We then
multiply by the Boltzmann weighted heat (g) and sum over all initial and final bath states
(h) to obtain the desired average Boltzmann weighted heat flow.

The sum over initial states can be split into separate sums on the left and right
projectors, since the bath is initially diagonal. Similarly, the sum over the final states can
be split into separate sums on the right and left due to the final trace over bath degrees
of freedom. As a consequence, we can rewrite the previous expression using the bath
Hamiltonian

= trS trB[IS ⊗ e−(β/2)HB

]U [IS ⊗ e+(β/2)HB

] · [ρS ⊗ ρB
eq] · [IS ⊗ e+(β/2)HB

]U †[IS ⊗ e−β/2)HB

].

Since the total Hamiltonian commutes with the unitary dynamics, and is time independent
over the time interval under consideration, we can write

U = e+(β/2)HUe−(β/2)H .

Furthermore, since eAeB = exp{A + B + 1
2
[A, B] · · ·},

[IS ⊗ e−(β/2)HB

]e+(β/2)H = [e+(β/2)HS+O(ε) ⊗ IB].
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Therefore, in the small coupling limit ε → 0 the heat flow measurement is approximately

≈ trS trB[e+(β/2)HS ⊗ IB]U [e−(β/2)HS ⊗ IB] · [ρS ⊗ ρB
eq] · [e−(β/2)HS ⊗ IB]U †[e+(β/2)HS ⊗ IB],

with errors of order ε. Taking the limit of small coupling constant does not represent an
additional constraint, since we already require that the system–bath coupling be small in
order to justify a quantum Markov chain dynamic, equations (5) and (10).

We now collect terms acting on the bath or system alone

= trS e+(β/2)HS
[
trB U [[e−(β/2)HS

ρSe−(β/2)HS

] ⊗ ρB
eq]U

†
]
e+(β/2)HS

and recover the Kraus operators {Aij} describing the reduced dynamics of the system,
equation (9):

= trS

∑

ij

e+(β/2)HS

Aije
−(β/2)HS

ρSe+(β/2)HS

A†
ije

−(β/2)HS

.

Finally, we have found that the average Boltzmann weighted heat flow can be represented
by

〈
e+βQ

〉
= trR−1SRρS, (18)

where S is the reduced dynamics of the system and the Hermitian map measurement
superoperator R is

Rρ = e−(β/2)HS

ρe−(β/2)HS

. (19)

The paired Hermitian map superoperators act at the beginning and end of a time
interval and measure the change in system energy during that interval. This does not
disturb the system beyond the disturbance already induced by coupling the system to the
environment.

5. Quantum Jarzynski identity

We are now in a position to derive the quantum Jarzynski identity (equation (2)) using
Hermitian maps and the quantum operator formalism. We split the total experimental
time into τ intervals, labeled by the integer t. The system Hamiltonian is fixed within
each time interval, and only changes in discrete jumps at the interval boundaries [2].
We can therefore measure the heat flow by wrapping the superoperator time evolution
of each time interval St with the corresponding Hermitian map measurements R−1

t StRt.
Similarly, we can represent the measurement of the Boltzmann weighted change in energy
of the system with

〈
e−βΔE

〉
= trRτSR−1

0 ρ

=
∑

if

e−β(ES
f−ES

i )〈sf |S
(
|si〉〈si|ρ|si〉〈si|

)
|sf〉.

The initial energy measurement does not disturb the system, or influence subsequent
measurements of the heat flow, since the system begins at thermal equilibrium with a
density matrix diagonal in the energy eigenbasis. The final energy measurement projects
the system into an energy eigenstate of the final Hamiltonian, but this does not influence
the preceding heat flow measurements.
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The average Boltzmann weighted work of a driven, dissipative quantum system can
therefore be compactly expressed as

〈
e−βW

〉
= tr

[
Rτ

(
∏

t

[R−1
t StRt]

)

R−1
0 ρeq

0

]
, (20)

where ρeq
t is the system equilibrium density matrix with system Hamiltonian HS

t .
Due to the structure of the energy change Hermitian maps R (equation (19)) and

the equilibrium density matrix (equation (4)) this product of superoperators telescopes,
leaving only the free energy difference between the initial and final equilibrium ensembles.

〈
e−βW

〉
= tr [Rτ [R−1

τ SτRτ ] · · · [R−1
2 S2R2][R−1

1 S1R1]R−1
0 ρeq

0 ]

= tr

[
Rτ [R−1

τ SτRτ ] · · · [R−1
2 S2R2][R−1

1 S1R1]
I

Z(0)

]

= tr

[
Rτ [R−1

τ SτRτ ] · · · [R−1
2 S2R2]R−1

1 S1ρ
eq
1

Z(1)

Z(0)

]

= tr

[
Rτ [R−1

τ SτRτ ] · · · [R−1
2 S2R2]R−1

1 ρeq
1

Z(1)

Z(0)

]

=
Z(τ)

Z(0)
= exp{−βΔF}.

We can recover a continuous time description by taking the limit where the time
intervals and jumps are infinitesimally small. In this we can express the quantum Jarzynski
identity in the continuous time Lindblad form.

〈
e−βW

〉
= trR(t) exp

{∫ τ

0

R(t)−1L(t)R(t) dt

}
R(0)−1ρeq

0

= e−βΔF . (21)
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