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The dynamics of an open quantum system can be described by a quantum operation: A linear, complete
positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation,
which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum
dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of
the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions.
The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat
exchanged with the environment.
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I. INTRODUCTION

Consider a sequence of states sampled from a classical,
homogeneous, steady-state, Markov chain #1,2$. For ex-
ample,

A, B, C, A, A, B, C, A, B, C, A ,

where the three states are labeled !A , B , C" and time is
read from left to right. The reversed sequence of states, read-
ing from right to left, is also Markovian, homogeneous in
time, and has the same equilibrium probability distribution.
Moreover, the probability of the transition i→ j in the for-
ward chain will be the same as the probability of the opposite
transition j→ i in the time reversed chain. Classical Markov
dynamics are equipped with a natural time-reversal opera-
tion.

The quantum mechanical generalization of a Markov tran-
sition matrix is a quantum operation, a linear, trace preserv-
ing, complete positive !TCP" map of operators #3–6$. These
superoperators can describe a wide range of dynamics, in-
cluding the pure quantum dynamics of an isolated system,
the mixed quantum-classical dynamics of a system interact-
ing with the environment, and the disturbance induced by
measurements of the system, either projection into a sub-
space due to a von Neumann measurement, or a more gen-
eral positive operator valued measurement !POVM" #5$.

In this Brief Report, we consider the generalization of
classical Markov chain time reversal to quantum operations.
In a quantum system, we cannot meaningfully consider the
chain of states. Instead, we consider the time reversal of the
chain of interactions between the system and environment.
The time-reversal invariance of an isolated system is broken
by coupling the system to the environment, and the magni-
tude of this symmetry breaking is related to the environmen-
tal entropy change. This naturally leads to an exposition of
the work fluctuation theorem for dissipative quantum dynam-
ics.

II. BACKGROUND: MARKOV CHAIN TIME REVERSAL

Let M be the classical Markov transition matrix of a for-
ward chain of states !i.e., Mji is the probability of moving
from state i to state j", M̃ the transition matrix of the reversed
chain, and p° the equilibrium probability distribution of both
chains !i.e., Mp° =M̃p° = p°". Since the probability of the
transition i→ j in the forward chain will be the same as the
probability of the opposite transition j→ i in the time re-
versed chain, it follows that the forward and reversed chain
transition matrices are related by

M̃ijpj
° = Mjipi

° for all i, j . !1"

Note that in much of the Markov chain literature !e.g., Ref.
#2$" the transition matrix is the transpose of the matrix de-
fined here. Also, we have avoided the conventional notation
for the time reversed matrix M̂ since this may cause unfor-
tunate confusion in the context of quantum dynamics.

In matrix notation this time reversal operation can be con-
veniently expressed as

M̃ = diag!p°"MT diag!p°"−1. !2"

Here, diag!p°" indicates a matrix whose diagonal elements
are given by the vector p°. M̃ is referred to as the reversal of
M #2$ or as the dual of M #1$. A transition matrix M is
balanced with respect to a probability distribution p° if
Mp° = p° and detailed balanced if the matrix is time-reversal
invariant, M̃ =M.

III. BACKGROUND: QUANTUM OPERATIONS

The dynamics of an open quantum system can be repre-
sented as the closed system unitary dynamics of the system
coupled to an extended environment, followed by a measure-
ment of the environment:

!! = S! = trE USE#! ! !E$USE
† . !3"

Here ! and !! are the initial and final density matrices of the
system, !E is the initial density matrix of the environment,
USE is the unitary operator representing the time evolution of
the combined system over some time interval, and trE is a*gecrooks@lbl.gov
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partial trace over the environment Hilbert space. The super-
operator S is a quantum operation, a linear, trace preserving,
complete positive !TCP" map of operators #3–6$.

Any complete map of positive operators has an operator-
sum !or Kraus" representation,

!! = S! = %
"

A"!A"
† . !4"

Conversely, any operator-sum represents a complete, positive
superoperator. The collection &A"' are known as Kraus op-
erators.

The requirement that the quantum operation conserved
the density matrix trace can be compactly written as

S#I = %
"

A"
†A" = I . !5"

Here, S# is the superoperator adjoint of S, the unique super-
operator such that (SA ,B)= (A ,S#B), where (A ,B) is the
Hilbert-Schmit inner product tr A†B. In the operator sum rep-
resentation the superoperator adjoint is performed by taking
the adjoints of the corresponding Kraus operators #4$

S! = %
"

A"!A"
† , S#! = %

"

A"
†!A". !6"

Each Kraus operator of a TCP map represents a particular
interaction with the environment that an external observer
could, in principle, measure and record without further dis-
turbing the dynamics of the system. The probability of ob-
serving the "th Kraus interaction is

p" = tr A"!A"
† , !7"

and the state of the system after this interaction is

!"! =
A"!A"

†

tr A"!A"
† . !8"

The overall effect of the dynamics, averaging over different
interactions, is the full quantum operation, Eq. !4".

In the limit of small time interval we obtain a continuous
time quantum Markovian dynamic

!!t" = exp*+
s

t

L!$"d$,!!s" , !9"

where L is the Lindbladian superoperator #5$.

IV. QUANTUM OPERATION TIME REVERSAL

We will now consider the time reversal of a quantum
operation. Since we cannot observe a sequence of states for
the quantum dynamics !at least not without measuring and
therefore disturbing the system", we instead focus on the
sequence of transitions. Each operator of a Kraus operator
sum represents a particular interaction with the environment
that an external observer could, in principle, measure and
record. We can therefore define the dynamical history by the
observed sequence of Kraus operators. For each Kraus op-
erator of the forward dynamics, A", there should be a corre-
sponding operator, Ã", of the reversed dynamics such that,

starting from equilibrium, the probability of observing any
sequence of Kraus operators in the forward dynamics is the
same as the probability of observing the reversed sequence
of reversed operators in the reversed dynamics. Specifically,
for consecutive pairs of events, starting from % !the invari-
ant, equilibrium density matrix of the dynamics S%=%"

p!-"1,"2-%" = p̃!-"2,"1-%" ,

or equivalently #by Eq. !7"$

tr!A"2
A"1

%A"1

† A"2

† " = tr!Ã"1
Ã"2

%Ã"2

† Ã"1

† " .

Since the invariant density matrix % is positive definite it has
a unique inverse and a positive definite square root. We may
therefore insert the identity I=%−1/2%1/2 between pairs of
Kraus operators. By taking advantage of the cyclic property
of the trace we find that

tr!#%1/2A"1

† %−1/2$#%1/2A"2

† %−1/2$%#%−1/2A"2
%−1/2$

##%1/2A"1
%1/2$" = tr!Ã"1

Ã"2
%Ã"2

† Ã"1

† " .

Therefore, Ã"=%1/2A"
†%−1/2 and the superoperator S̃, the re-

versal or % dual of S, is

S̃! = %
"

Ã"!Ã"
† = %

"

#%−1/2A"
†%1/2$!#%1/2A"%−1/2$ .

!10"

If we write D%! for the superoperator %1/2!%1/2 then this
reversal may be expressed independently of any particular
decomposition of S into Kraus operators

S̃ = D%S#D%
−1. !11"

By similar reasoning, the time reversal of the Lindbladian
continuous time dynamics #Eq. !9"$ takes the same form, L̃
=D%L#D%

−1, analogous to the time reversal of a continuous
time Markov chain #2$.

We can readily confirm that the quantum operator reversal
#Eq. !11"$ is an involution !a duality" on TCP maps with
fixed point %. From Eq. !10" it is clear that the reversed
superoperator has an operator-sum representation and is,
therefore, a complete, positive map. Note that D%=D%

# is a
Hermitian superoperator !since positive operators are Her-
mitian %†=%", that D%I=%, and that D%

−1%= I. Therefore, the

reversal is idempotent, S̃˜ =S, has the correct invariant den-
sity matrix,

S̃% = D%S#D%
−1% = D%S#I = D%I = % ,

and is trace preserving,

S̃#I = D%
−1SD%I = D%

−1S% = D−1% = I .

If R and S are two TCP maps with the same fixed point then
RS̃= S̃R̃.

By analogy with classical Markov chain terminology, we
may say that a quantum operation is balanced with respect to
a density matrix, %, if S%=%, and detailed balanced if
S̃=S. Conversely, if S is detailed balanced with respect to
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some density matrix %, then % is a fixed point of S,

S% = S̃% = D%S#D%
−1% = D%S#I = D%I = % .

In passing, it is interesting to note that the time reversal
operation, S̃=D%S#D%

−1, is an antilinear operator of a super-
operator, an anti-super-duper operator.

V. ISOLATED QUANTUM SYSTEM

The operator sum representation of a closed system dy-
namic contains a single, unitary Kraus operator, U=e−i/&Ht,
where H is the system Hamiltonian. Any density matrix that
is diagonal in the energy eigenbasis will be a fixed point of
this dynamics, and any such diagonal operator will commute
with the unitary Kraus operator. Therefore, the quantum op-
erator reversal corresponds to the time reversal of the unitary
dynamics

S!t"! = U!U† = e−i/&Ht!e+i/&Ht,

S̃!t"! = U†!U = e+i/&Ht!e−i/&Ht. !12"

VI. CLASSICAL MARKOV CHAIN

Given an orthonormal basis set &-ei)' we can extract the
“matrix elements” of a superoperator S

Sabcd = (ea-S!-ed)(ec-"-eb) . !13"

There are several different conventions for the ordering of
the indices. Caves #4$ would write Sad,bc and Terhal and Di-
Vincenzo #7$ Sab,dc. The ordering used here is convenient
when transitioning to a tensor !Sbd

ac" or diagrammatic
! b←

a→S←c
→d" notation.

In any basis the matrix Mac=Saacc is a Markov stochastic
transition matrix; The elements are real and positive
Mac'0 and the rows sum to 1. #Since -ec)(ec- is a positive
operator and S is a positive map, S!-ec)(ec-" must also be a
positive operator, and therefore the elements are real and
positive. The trace preserving condition requires that
S#I= I. Since I=%a-ea)(ea-, therefore %aSaacd=(cd and
%aMac=1.$

In the diagonal basis of the equilibrium density matrix a
time reversal of the quantum operation induces a time rever-
sal of the embedded Markov transition matrix. The reversal
is with respect to the probability density formed by the diag-
onal elements of the density matrix

M̃ac = S̃aacc = (ea-%1/2S#!%−1/2-ec)(ec-%−1/2"%1/2-ea)

=
%aa

%cc
(ea-S#!-ec)(ec-"-ea) =

%aa

%cc
Sccaa =

pa
°

pc
° Mca.

VII. THERMOSTATED QUANTUM SYSTEM

The reduced dynamics of a quantum system interacting
with an external environment or bath can be derived by con-
sidering the deterministic dynamics of the joint system, and

then tracing over the bath degrees of freedom, leaving a
quantum operation description of the system dynamics alone.
In particular, this approach provides a concise description of
a quantum system interacting with a thermal environment of
constant temperature. Let the total Hamiltonian of the com-
bined system be

HSB = HS
! IB + IS

! HB + )Hint, !14"

where IS and IB are system and bath identity operators, HS is
the Hamiltonian of the system, HB is the bath Hamiltonian,
Hint is the bath-system interaction Hamiltonian, and ) is a
coupling constant.

We assume that initially the system and bath are uncorre-
lated, and therefore the initial combined state is !S ! %B,
where %B is the thermal equilibrium density matrix of the
bath

%B = %
i

e−*Ei
B

ZB
-bi)(bi- .

Here &Ei
B' are the energy eigenvalues, &-bi)' are the orthonor-

mal energy eigenvectors of the bath, and ZB is the bath par-
tition function. We follow the dynamics of the combined
system for some time, then measure the state of the bath:

S!S = trB USB#!S ! %B$USB
†

= %
j

(bj-USB*!S ! .%
i

e−*Ei
B

ZB
-bi)(bi-/,USB

† -bj)

= %
ij

e−*Ei
B

ZB
(bj-USB-bi)!S(bi-USB

† -bj) . !15"

Here, trB is a partial trace over the bath degrees of freedom,
USB=exp!−iHSBt /&" is the unitary dynamic of the total sys-
tem, and we have assumed that the coupling constant ) is
small. It follows that the Kraus operators for this dynamics
are

Aij =
e−1/2*Ei

B

0ZB

(bj-USB-bi) !16"

and the corresponding reversed operators are

Ãij = %1/2Aij
† %−1/2

= %1/2. e−1/2*Ei
B

0ZB

(bi-USB
† -bj)/%−1/2

= (bi-#%S
+1/2

! %B
+1/2$USB

† #%S
−1/2

! IB$-bj)

1 (bi-USB
† #IS ! %B

+1/2$-bj)

=
e−1/2*Ej

B

0ZB

(bi-USB
† -bj) . !17"

If we compare the reversed operator with the corresponding
forward operator we can see that taking the time reversal of
a quantum operation that acts on the system subspace is
equivalent !in the small coupling limit" to taking the time
reversal of the entire system-bath dynamics.
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VIII. DRIVEN QUANTUM DYNAMICS

Consider a system with a time-dependent Hamiltonian,
interacting with an external, constant temperature heat bath.
We split time into a series of intervals, labeled by the integer
t. The system Hamiltonian changes from one interval to the
next, but is fixed within each interval. !We can recover a
continuously varying system Hamiltonian by making the in-
tervals short." The dynamics are described by dissipative
quantum operations #Eq. !15"$ St with Kraus operators #Eq.
!16"$ &A"

!t"'. The dynamical history of the system is defined
by the initial system state -e0)(e0-, a sequence of interactions
between the system and environment, described by the Kraus
operators A"1

!1" ,A"2

!2" , . . . ,A"$

!$" and the final system state -e$)(e$-.
The probability of observing this history is related to the
probability of the reversed history in the time reversed chain

p!e0;"1,"2, . . . ,"$;e$"
p̃!e$;"$, . . . ,"2,"1;e0"

= exp&− *Q' . !18"

This follows because for every Kraus interaction of the for-
ward dynamics there is a corresponding interaction in the
reverse dynamics Ã"

† =A" exp&+ 1
2*Q"' #Eq. !17"$ where

Q=−!Ej
B−Ei

B" is the heat, the flow of energy from the bath to
the system during the forward time step,

p!e0;"1,"2, . . . ,"$;e$"

= tr(e$-A"$

!$" ¯ A"2

!2"A"1

!1"-e0)(e0-A"1

!1"†A"2

!2"† ¯ A"$

!$"†-e$)

= tr(e0-Ã"1

!1"Ã"2

!2" ¯ Ã"$

!$"(e$-Ã"$

!$"† ¯ Ã"2

!2"†Ã"1

!1"†-e0)

#exp&− *!Q"1
+ Q"2

+ ¯ + Q"$
"'

= p̃!e$;"$, . . . ,"2,"1;e0"exp&− *Q' .

Note that * is the inverse temperature of the environment
and, therefore, that −*Q is the change in entropy of that
environment. This property of microscopic reversibility as
expressed in Eq. !18" #8$ immediately implies that the work
fluctuation relation #9$ and Jarzynski identity #10$ can be
applied to a driven quantum system coupled to a thermal
environment #11–15$. The crucial difference between the
classical and quantum regimes is that in the quantum case we
must avoid explicitly measuring the work directly and in-
stead measure the heat flow from the environment #13,15$.
Measuring the work and the energy of the environment is
tantamount to continuously monitoring the energy of the sys-
tem, which would disturb the quantum dynamics of the sys-
tem in which we are interested.
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