PHYSICAL REVIEW E 75, 041119 (2007)

Beyond Boltzmann-Gibbs statistics: Maximum entropy hyperensembles out of equilibrium
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What is the best description that we can construct of a thermodynamic system that is not in equilibrium,
given only one, or a few, extra parameters over and above those needed for a description of the same system
at equilibrium? Here, we argue the most appropriate additional parameter is the nonequilibrium entropy of the
system. Moreover, we should not attempt to estimate the probability distribution of the system directly, but
rather the metaprobability (or hyperensemble) that the system is described by a particular probability distribu-
tion. The result is an entropic distribution with two parameters, one a nonequilibrium temperature, and the
other a measure of distance from equilibrium. This dispersion parameter smoothly interpolates between cer-
tainty of a canonical distribution at equilibrium and great uncertainty as to the probability distribution as we
move away from equilibrium. We deduce that, in general, large, rare fluctuations become far more common as

we move away from equilibrium.
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Consider a gas confined to a piston, as illustrated in Fig.
1. The realization on the left was sampled from thermal equi-
librium with a fixed plunger. To describe the probability of
every single possible configuration of the particles we only
need to know the Hamiltonian of the system and the tem-
perature of the environment [1,2]. On the other hand, the
system on the right has been sampled from a nonequilibrium
ensemble. Although the Hamiltonian is the same, the plunger
has recently been in violent motion and this perturbation has
driven the ensemble away from equilibrium. To describe the
configurational probability we now need to know the entire
past history of perturbations that the system has undergone.
The dynamics and historical details matter.

This example illustrates the essential difficulty we face
when trying to directly extend equilibrium statistical me-
chanics out of equilibrium. There is only one ensemble that
can describe a given system in thermal equilibrium, but there
are a multitude of ways that the same system can be out of
equilibrium. That the equilibrium entropy is maximized
(given the available constraints, such as the mean energy) is
a strong condition that uniquely determines the probability
distribution. However, let us take a step back, and reflect that
statistical mechanics itself is designed to circumvent a simi-
lar difficulty. In classical mechanics we typically assume that
we know the exact microstate of the system. However, in
statistical mechanics we recognize that such a detailed de-
scription is frequently neither possible nor desirable. A few
bulk measurements or parameters do not provide nearly
enough information to fix the microstate. Instead we content
ourselves with calculating the probability that the system oc-
cupies a particular microstate. To ask what the state of the
system is, rather than what it could be, is to ask an unneces-
sarily difficult question.

Out-of-equilibrium we essentially face the same problem,
compounded. Clearly we cannot obtain enough information
from a few measurements to determine the microscopic state
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of the system, but if the system is out-of-equilibrium then a
few parameters or measurements are not sufficient (in gen-
eral) to determine the ensemble either. Therefore, perhaps the
correct approach is not to try to determine what the probabil-
ity distribution of the system is, but instead attempt to deter-
mine what the probabilities could be. In other words, instead
of thinking about an ensemble of systems, we instead envis-
age an ensemble of ensembles, a “hyperensemble” (Fig. 2),
where each member of the hyperensemble has the same in-
stantaneous Hamiltonian, but is described by a different
probability distribution. We seek a generic description of the
typical nonequilibrium ensemble given a few parameters or
measurements that describe the average behavior of the hy-
perensemble.

We can think of this approach as an extension of the
method of the most probable distribution [1,3,4]. If the ca-
nonical distribution is the most probable in equilibrium, we
may reasonable ask what are the highly plausible distribu-
tions as we move away from equilibrium. This basic idea of
estimating the probability of a probability density (a “metap-
robability”) is often used in Bayesian statistics, especially
when the available data is too sparse to reliable estimate the
probability directly [5-7]. Reference [6] contains a lucid de-
scription of this procedure in the context of amino acid se-
quence profiles. We have borrowed the hyperprefix from
Bayesian statistics, were it is usual to talk about hyperpriors
(a prior distribution of a prior distribution) and associated
hyperparameters.

With this insight, we can move beyond the standard ca-
nonical ensemble by changing the question. Instead of trying
to find the probability distribution € of the system directly,
we instead estimate the metaprobability P(#6), the probability
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*Electronic  address:  gecrooks@lbl.gov;  URL:  http:// FIG. 1. Schematic realizations of a gas confined to a piston in
bespoke.lbl.gov/ and out of equilibrium.
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of the microstate probability distribution. We proceed analo-
gously to the maximum entropy derivation of equilibrium
statistical mechanics [2,8]. We consider a physical system
with a set of states, each characterized by an energy E;. We
will find the probability distribution of ensembles P(6) that
maximizes the entropy H of the hyperensemble

P(6)
m(6)

H(P(H)):—jP(&)ln de, (1)

while maintaining certain appropriate constraints. Here, 6 is
the positive vector {6,,6,,...,60} and integration is per-
formed over normalized probabilities:

K
do= 5(2 6, - 1)d01d02---d0K.
i=1

The distribution of distributions P(#6) is a normalized map of
0 to real numbers [ [P(6)do=1].

The entropy is measured relative to the distribution m(6).
This distribution acts as a prior for # and consequentially we
should set m(#6) to the most uninformative distribution con-
sistent with the prior data [5,7]. In the current case, we only
know that there are K accessible states and that we have no
reason to favor any state over any other state. Consequen-
tially, the appropriate prior is the uniform distribution m(6)
=const.

The trick to maximum entropy methods is finding the ap-
propriate constraints, since with an arbitrary choice of con-
straint and prior practically any answer can be manufactured.
To avoid this trap, we seek a minimal set of physically and
mathematically reasonable parameters. Clearly, the hyperen-
semble must be normalized,

FIG. 2. Schematic illustration
of a single system, an ensemble of
systems and a hyperensemble, an
ensemble of ensembles.

1= f P(6)d6. ()

And, by analog with the canonical ensemble, we should con-
strain the mean energy of the ensemble of ensembles

(BN = J P(@)[E a,«Ei]da, )

where E; is the energy of state i.

Thus far, we have only incorporated the same information
and constraints that lead to the canonical ensemble, namely,
the density of energy states, normalization, and mean energy.
In addition we require a measure of how far the system is
from equilibrium. After all, the quintessential feature of non-
equilibrium systems is that they are not in equilibrium. What
is the most appropriate measure? If the system were in equi-
librium, then the entropy would be maximized given the con-
straints. It follows that out-of-equilibrium the entropy of the
ensemble is not maximized, and moreover, the entropy can-
not be determined with any certainty from a measurement of
the mean energy alone. Therefore, the entropy itself can be
used as an additional, physically relevant constraint:

(8) = f P(ﬁ)[— 2 6, In 9,.]519. (4)

To summarize, we will maximize the entropy of the hy-
perensemble [Eq. (1)] subject to normalization, the mean en-
ergy and the mean ensemble entropy [Eq. (2)-(4)]. The so-
Iution to this problem is found by introducing Lagrange
multiplies {\} and then applying the calculus of variation in
the usual way:

P(0) = e Mo MEE)-AS(6) 5)

Some manipulation will illuminate the significance of this
expression. Let us rewrite with A=A and A,=N\:
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FIG. 3. The entropic distribution [Eq. (8)] over two states. (a)
Reference distribution p=(0.5,0.5), A=0,1,2,4,8 (broad to
peaked). (b) A=4, p;=0.05,0.20,0.35,0.5,0.65,0.80,0.95 (left to
right). (¢) p=(0.1,0.9), A=0.5,1,2,4,8. (d) Same p, log scale, \
=0.5,1,2,4,8,16,32,64,128. Note that the reference distribution
controls the mode and that as the dispersion parameter A ap-
proaches O the distributions become broader and the mean moves
towards %

P(O) o exp(— A BE+23 6 In 0,). 6)

The parameter S has units of entropy per unit of energy and
is effectively an inverse temperature. Therefore, we can natu-
rally introduce a canonical ensemble with the same effective
temperature

pi exp(- BE;) (7)

a 1
Ne(:)

and rewrite the maximum entropy hyperensemble as
1 0;
P(a):—exp<— A, 6:1n —’), (8)
E(ﬂ7)\) i Pi

where £ is a normalization constant. It is now evident that
our hyperensemble has the functional form of the entropic
distribution, a probability of probabilities that occasionally
occurs in Bayesian statistics [9-15]. This same functional
form also appears as the asymptotic limit of the multinomial
distribution with large sample sizes [16] and in large devia-
tion theory [16,17].

The entropic distribution over a binary state space is il-
lustrated in Fig. 3 and with a Gaussian reference (e.g., a
particle in a harmonic potential) in Fig. 4. We see that as \
decreases the dispersion of the probability distributions in-
creases, the mean distribution moves away from the canoni-
cal distribution, the average probability of rare states in-
creases, and the probability of common states decreases to
compensate. Moreover, in Fig. 4 we see that N\ controls a
crossover in behavior; if p>\~! then the uncertainty in 6 and
the bias away from equilibrium are relatively small, whereas
for rare states, p<<\~!, the perturbation away from equilib-
rium are large. Therefore, the generic, predicted behavior is
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FIG. 4. The entropic distribution [Eq. (8)] with a Gaussian ref-
erence distribution (zero mean, unit variance) and dispersion A\
=100. The dashed line is the reference p, the points are a single
realization of @ and the solid line is the mean distribution ()
(sampled using a discretized distribution and Monte Carlo Gibbs
sampling [21]). Note that the variation of 6 away from the reference
is relatively large for intrinsically rare states p<<1/\. The crossover
in behavior is indicated by the horizontal dashed line.

that rare events typically (but not necessarily) become far
more common as the condition of thermal equilibrium is
relaxed.

We can deduce some important properties of the hyperen-
semble by noting that the function in the exponential of Eq.
(8) is the relative entropy of 6 to the reference canonical
distribution p [16]:

D(Alp) = 61n g 9)

This is a natural measure of how distinguishable one distri-
bution is from another. Since the relative entropy is zero if
the distributions are identical, and positive if they are not, it
immediately follows that the mode of the entropic distribu-
tion is located at the reference p. In other words, the single
most probable distribution of the hyperensemble is a canoni-
cal distribution controlled by the effective temperature B,
and the dispersion of the hyperensemble about that mode is
controlled by the inverse scale parameter \. If \ is large the
hyperensemble collapses to a single point at the mode and
we recover the canonical ensemble of equilibrium statistical
mechanics. It follows that the reference temperature is nu-
merically equal to the conventional temperature of the same
system with the same mean energy at thermal equilibrium.
As \ decreases the dispersion increases and typical distribu-
tions differ significantly from the reference, until at A=0
every distribution is equally likely.

Another way of looking at the canonical hyperensemble is
to note that the relative entropy of 6 to a canonical reference
p can be interpreted as a generalized free energy difference

[18]

D(d|p) = BF(6) - BF(p),
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BF(p) == 2 p;Inp;+ B2 pik;. (10)

Since p is canonical F(p)=S/B—-(E) is the Helmholtz free
energy, whereas F(6) can be interpreted as a generalized,
noncanonical free energy. Using these definitions, the ca-
nonical hyperensemble can be written as

1
P(6) = ——exp{—-A\BLF(0) - F . 11

(6) BN © p{=\BLF(6) - F(p) ]} (11)
The physical picture is that near thermal equilibrium the en-
semble that maximizes the free energy dominates the hyper-
ensemble. As we move away from equilibrium the free en-
ergy is no longer necessarily maximized. Rather the
probability of obtaining a particular ensemble out of equilib-
rium is determined by the generalized free energy difference
between that ensemble and the reference canonical ensemble.
This expression is pleasingly reminiscent of the thermody-
namic fluctuation representation of standard statistical me-
chanics [19], except we are now looking at fluctuations in
ensemble rather than state.

We can also derive the entropic hyperensemble by di-
rectly constraining the mean relative entropy (D (6l p)). From
the viewpoint of information theory, this is the average pen-
alty for encoding states of the system, assuming the they are
drawn from the reference distribution p rather than the true
distributions [16]. This measure is similar to the Jensen-
Shannon divergence (D(0II{6))) [20], except that the refer-
ence distribution is the mode, rather than the mean of 6.

The entropic distribution is not particularly amenable to
analysis. To proceed further, we adopt a simple approxima-
tion. We note that #=p if N\ is large, and that D(pll6)
=D(0llp)+O0[Z(6;—p;)*]. For small \ the deviations are
large and this approximation is inaccurate. Therefore,

1
L(B.N)

-\D(flp) ~

P(0) = e_)‘D(”He)(given that 6= p)

e
L(B,N)
K
a [T6% ", a;=np;+1.
i=1

This is a Dirichlet distribution. The mode, mean, covariance
matrix are [7]

mode (61) = Pi>

Ap;i+1 (1)
0;) = ~p;+0| -,
O=""rx POy

(Api+ DN+ K=Ap;= 1)

> N +K)>2N+K+1)
T DD (1) o
T+ ksn O\N) T

The mode is unaltered by the approximation. As \ decreases
the mean distribution moves away from the canonical distri-
bution as O(\™") and the dispersion of the probability distri-
butions increases. If p>\~! then the uncertainty in 6, and the
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bias away from equilibrium are relatively small. For rare
states, any p<<\~!, the perturbation are large. However, large
perturbations also invalidate the approximation.

Currently, various modifications or extensions of
Boltzmann-Gibbs statistics are being investigated, including
Tsallis statistics (which modifies the entropic function) [22]
and maximum entropy production (which modifies the con-
straints) [23]. Perhaps the most similar approach to the
present work is superstatistics [24-28], the central idea of
which is that a system may be locally in equilibrium (either
in time or space), but globally out of equilibrium. Therefore,
the system as a whole can be described by a mixture of
canonical ensembles, each with a different local temperature.
In contrast, the components of the maximum entropy hyper-
ensemble are not required to be canonical.

The essentially difficulty with superstatistics is that the
distribution of effective temperatures is unconstrained. It is
therefore interesting to ask what distribution of local tem-
perature would maximize the hyperentropy given that the
members of the hyperensemble are canonical? Since the re-
sult will depend on the density of states, let us explore a
simple, but important, special case, a collection of harmonic
oscillators. The partition function is Q(8)=8"¢ and therefore
the mean energy scales as (E)=c/[3, where the constant “c”
is proportional to the size of the system. The prior becomes
m(T)o1/T [5]. Plugging these relations into Eq. (8) we find

T c-1
P(T) o (F) e—L‘)\T/TO’ (12)

where T is the effective local temperature and 7° =1/ is the
reference temperature. Here, with the hyperensemble ap-
proach we predict that if the system is linear and locally in
equilibrium, then the temperature fluctuations follow a
gamma distribution [27,29,30] with mean 7° and standard
deviation 7°/ve\. If the temperature fluctuations are not
gamma distributed, then either the system is not linear, not in
local equilibrium, or we have failed to incorporate some im-
portant, pertinent information about the system [5].

It is worth noting that we would have obtained very dif-
ferent results if we had chosen different constraints. In par-
ticular, if we maximize the hyperentropy given the mean
relative entropy of the reference p to the ensemble 6,
(D(pll 6)), then we obtain a Dirichlet distribution. This in
turn leads to the prediction that the local temperature of a
linear system follows an inverse gamma distribution, which
is known to be equivalent to the nonextensive statistics of
Tsallis [22,24,25,31]. This is an intriguing connection, but in
contrast to the constraints on the mean entropy and energy
that leads to the entropic distribution, the constraint on
(D(pll)) does not have any immediately obvious deep
physical or information theoretic significance.

In this paper, I have argued that a natural way of moving
beyond equilibrium Boltzmann-Gibbs statistics is to change
the question: Instead of trying to determine what the prob-
ability distribution of a system is, we instead ask what the
probability distribution could be. We seek an ensemble of
ensembles that captures the generic properties of matter ge-
nerically out of equilibrium. The solution to this problem is
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found by maximizing the entropy of the hyperensemble,
given the mean energy and mean ensemble entropy. This
yields a physically plausible description of fluctuations away
from equilibrium, a natural definition of temperature out of
equilibrium, a natural measure of distance away from equi-
librium, and the intuitively plausible prediction that rare
events typically become far more common as a system
moves away from thermal equilibrium.

It remains uncertain to what extent the predictions of the
canonical hyperensemble can be applied to a single experi-
ment. At the very least, this approach tells us how uncertain
we should be about thermodynamic predications applied to
nonequilibrium systems. Alternatively, we can adopt the at-
titude of Jaynes [5], that if a nonequilibrium ensemble does
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not follow the entropic distribution, then we have simply
failed to incorporate some important, pertinent information
about the system. But perhaps certain nonequilibrium sys-
tems will self-average, in much the same way that large,
thermodynamic systems self-average. Then the predictions
of the canonical hyperensemble and the behavior of the sys-
tem will be independent of the details of how the system is
driven from equilibrium. An obvious candidate for such be-
havior is fully developed turbulence.
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[1]7 L. W. Boltzmann, Wiener Berichte 63, 397 (1871).

[2] J. W. Gibbs, Elementary Principles in Statistical Mechanics
(Yale, New Haven, 1902).

[3] E. Schrédinger, Statistical Thermodynamics (Cambridge Uni-
versity Press, Cambridge, 1952).

[4] D. A. McQuarrie, Statistical Mechanics, 2nd ed. (University
Science Books, New York, 2000).

[5] E. T. Jaynes, Probability Theory: The Logic of Science (Cam-
bridge University Press, Cambridge, 2003).

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological
Sequence Analysis (Cambridge University Press, Cambridge,
1998).

[7] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Baye-
sian Data Analysis, 2nd ed. (Chapman & Hall/CRC, New
York, 2004).

[8] E. T. Jaynes, Phys. Rev. 106, 620 (1957).

[9] J. Skilling, in Maximum Entropy and Bayesian Methods, edited
by J. Skilling (Kluwer, Dordrecht, 1989), pp. 45-52.

[10] J. Skilling, in Maximum Entropy and Bayesian Methods, edited
by P. F. Fougere (Kluwer, Dordrecht, 1990), pp. 341-350.
[11] C. C. Rodriguez, in Maximum Entropy and Bayesian Methods,

edited by J. Skilling (Kluwer, Dordrecht, 1989), pp. 415-422.
[12] M. Brand, in Artificial Intelligence and Statistics, edited by D.
Heckerman and C. Whittaker (Morgan Kaufmann, San Fran-
cisco, 1999), Vol. 7.
[13] M. Brand, Neural Comput. 11, 1155 (1999b).

[14] A. Caticha, in Maximum Entropy and Bayesian Methods in
Science and Engineering, edited by A. Mohammad-Djafari
(Springer, New York, 2001), p. 94.

[15] A. Caticha and R. Preuss, Phys. Rev. E 70, 046127 (2004).

[16] T. M. Cover and J. A. Thomas, Elements of Information
Theory (Wiley, New York, 1991).

[17] R. S. Ellis, Physica D 133, 106 (1999).

[18] H. Qian, Phys. Rev. E 63, 042103 (2001).

[19] H. B. Callen, Thermodynamics and an Introduction to Ther-
mostatistics, 2nd ed. (Wiley, New York, 1985).

[20]J. Lin, IEEE Trans. Inf. Theory 37, 145 (1991).

[21] S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach.
Intell. 6, 721 (1984).

[22] C. Tsallis, J. Stat. Phys. 52, 479 (1988).

[23] R. C. Dewar, J. Phys. A 36, 631 (2003).

[24] C. Beck and E. G. D. Cohen, Physica A 322, 267 (2003).

[25] C. Tsallis and A. M. C. Souza, Phys. Rev. E 67, 026106
(2003).

[26] C. Beck, E. G. D. Cohen, and H. L. Swinney, Phys. Rev. E 72,
056133 (2005).

[27] H. Touchette and C. Beck, Phys. Rev. E 71, 016131 (2005).

[28] F. Sattin, Eur. Phys. J. B 49, 219 (2006).

[29] H. Touchette, in Nonextensive Entropy-Interdisciplinary Appli-
cations (Oxford University Press, Oxford, 2002), p. 159.

[30] F. Sattin and L. Salasnich, Phys. Rev. E 65, 035106(R) (2002).

[31] G. Wilk and Z. Wtodarczyk, Phys. Rev. Lett. 84, 2770 (2000).

041119-5



