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Mesostructure of polymer collapse and fractal smoothing
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We investigate the internal structure of a polymer during collapse from an expanded coil to a compact
globule. Collapse is more probable in local regions of high curvature, so a smoothing of the fractal polymer
structure occurs that proceeds systematically from the shortest to the longest length scales. A proposed uni-
versal scaling relationship is tested by comparison with Monte Carlo simulations. We speculate that the
universal form applies to various fractal systems with local processes that promote smoothness over time. The
results complement earlier work showing that on the macroscale polymer collapse proceeds by driven diffusion
of the polymer ends.@S1063-651X~99!01209-X#

PACS number~s!: 87.15.Aa, 61.41.1e, 61.43.2j, 64.60.Cn
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Understanding the collapse of homopolymers from a fl
ible coil to a compact globule is a first step towards model
the kinetics of molecular self-organization. It may be r
evant to a description of DNA aggregation and the init
collapse of proteins from an expanded state to a molten g
ule from which the final ordered structure is formed@1,2#.
We have performed scaling analysis and simulation of
transition to investigate kinetic effects during collapse@3,4#.
The results suggest that the motion of the polymer ends p
an important role in kinetics because their motion is co
strained only by a single bond. Along the contour, monom
have two bonds, their motion is more constrained, and
gregation is more difficult. Thus, collapse for a long polym
occurs almost as a one-dimensional process where the p
mer ends accumulate mass by moving along the contou
the polymer while accreting monomers and small aggrega
Encounters between monomers far apart along the conto
form rings are rare so they play no role in the collapse. A
result of the faster aggregation at the polymer ends, the
lapsing polymer on a macroscopic scale takes on a dumb
like appearance. The few DNA fluorescence measurem
that follow a single polymer collapse and its metasta
states also indicate the special role of polymer ends@5–7#.
However, a description of the internal structure of the po
mer away from the polymer ends has not, thus far, b
obtained.

In this paper we consider the internal structure of
polymer during collapse, not including the ends. Our obj
tive is to understand the local contour structure that cons
of small aggregates and polymer segments between th
Our arguments generalize the consideration of the freed
of motion of monomers, because monomers found in stra
segments are much more constrained in their motion t
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monomers in curved segments. This results in faster colla
in regions of high polymer curvature.

We will focus on intermediate length scales between
size of the expanded polymer and the size of the collap
aggregate. The length scales to which this analysis is
evant are between the size of the initial coil, which scales
Nn, whereN is the number of monomers andn50.6 is the
Flory exponent, and the size of the final aggregate, wh
scales asN1/3 ~assuming a compact aggregate!. For long
polymers these scales are well separated. During collaps
these intermediate length scales, the internal structure o
final aggregate as well as of intermediate clusters that
formed should not be relevant. When convenient we c
treat clusters as point objects, though this is not always n
essary. In particular, it is not necessary for treatment of th
dynamic properties. The dynamic properties of cluster mo
ment follow Stokes’ law—the diffusion constant of cluste
decreases slowly with cluster size,D;R21, whereR is the
radius of a cluster. This implies that the dynamics of clust
varies smoothly from that of the original monomers, and
universal scaling behavior of the polymer during collap
should be found. By focusing on intermediate length sca
our results should be widely relevant to polymers with var
properties. While the eventual structure of the collaps
polymer depends in detail on monomer-monomer inter
tions, the separation of lengths scales implies that for a l
enough polymer with a compact final aggregate, the det
of these interactions should not be relevant to the kinetics
the collapse at early times.

To characterize the collapse it is useful to compare
distance between two monomers with the contour length
the polymer connecting them. In conventional scaling
polymer end-to-end distanceR is expressed as a function o
the number of monomersN, or the number of links in the
chainL5N21. When aggregation occurs, the small agg
gates that form, appearing like beads on a chain, decreas
effective contour length of the polymer. We can define t
effective contour length by counting the minimum number
4559 © 1999 The American Physical Society
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monomer-monomer bonds that one must cross in orde
travel the polymer from one end to the other. Bonds form
by aggregation allow us to bypass parts of the usual poly
contour. Because we are not interested in the structur
aggregates, we can neglect the difference between diffe
kinds of bonds. In this way the effective number of links
the chain decreases over time. Thus, in order to study
internal polymer structure during collapse, we investiga
via scaling arguments and simulations, the scaling of
end-to-end distancer ( l ,t) of internal polymer segments as
function of their effective contour lengthl.

The equilibrium structure of the polymer befo
collapse—in good solvent conditions—is a self-avoidi
random walk, wherer; l n and n50.6 in three dimensions
The contour length is proportional to the number of mon
mers. During collapse, monomers are constrained from
gregating with other monomers by their already exist
bonds. A completely straight segment of polymer does
allow aggregation because no monomer can move to b
with another monomer. In contrast, highly curved regions
more flexible and monomers in these regions may aggreg
Aggregation in a curved region reduces the contour len
and the polymer becomes straighter, smoothing the ro
fractal polymer structure. We therefore expect that the s
ing exponent will increase over time. At long enough tim
the scaling will approach that of a straight line (r; l ). How-
ever, this smoothing occurs first at the shortest length sca
In effect the polymer structure becomes consistent wit
progressively longer persistence length. Assuming scal
we anticipate that the polymer end-to-end distance fo
polymer segment away from the ends of contour lengthl will
follow the dynamic scaling formula:

r 5 l f ~ t/ l z!. ~1!

The universal functionf (x) is a constant for large values o
its argument so thatr; l ~long times!, and scales asx(12n)/z

for small values of its argument, so thatr; l n ~short times!.
The short time regime described by Eq.~1! starts after an
initial transient~a very short time regime! in which no new
bonding has taken place. During the very short time reg
the time dependence of the universal scaling function d
not apply. The usual scaling of the contour length and e
to-end distance persists until just after the very short ti
regime because the bonds that are formed initially do
form large rings and thus do not affect the large scale po
mer structure. The short time regime begins with the fi
formation of individual bonds and lasts until the characte
tic relaxation time of the contour of lengthl. This time—the
relaxation time of the contour of lengthl—is the crossover
time between the short and long time regimes which follo
a scaling lawt; l z. The dynamic exponentz is assumed to
be consistent with conventional Zimm relaxation,z53n. Fi-
nally, we can also rewrite this scaling relation in terms of t
number of monomersn in a polymer segment. Since th
average mass along the contour isM;n/ l and M follows
power-law scaling@3# M;ts—we substitutel;nt2s in Eq.
~1! to obtainr (n,t).

We emphasize that kinetic effects become important
collapse of polymers in poor solvent, after equilibration
good solvent—the result of a quench in solvent affinity
temperature below the thermodynamic transition
to
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Q solvent conditions. Close to theQ point a mean-field ar-
gument where kinetics do not play a significant role is like
to apply @8,3#. In contrast, we will approximate the collaps
by a completely irreversible model where no disaggregat
occurs. Because the scaling variable that determines the
fective distance from theQ point isN1/2DT, long lengths are
equivalent to small temperatures, and microscopic revers
ity becomes irrelevant at long enough length scales. We
thus consistently adopting a description that is valid
lengths longer than the microscopic regime. We further
strict our study to diffusive monomer motion and short-ran
interactions.

The scaling relationship, Eq.~1!, was tested by Monte
Carlo simulations. These simulations in part include the
fects of hydrodynamics during collapse by scaling the dif
sion constant of aggregates according to Stokes’ law.
simulations are based on the two-space lattice Monte C
algorithm @3,4,9,10# developed for simulating high
molecular-weight polymers, and shown to be significan
faster than previous state-of-the-art techniques@9,10#. In the
two-space algorithm, odd monomers and even monomer
a polymer are distinct and may most easily be described
residing in two separate spaces. Each monomer occupies
cell of a square lattice. Both connectivity of the polymer a
excluded volume are imposed by requiring that, in the op
site space, only the nearest neighbors along the contou
side in the 33333 neighborhood of cells around eac
monomer. Motion of monomers is performed by Mon
Carlo steps that satisfy the polymer constraints. Since a
cent monomers~and only adjacent monomers! may lie on top
of each other, the local motion of the polymer is flexib
Despite the unusual local polymer properties, the behavio
long polymers is found to agree with conventional scali
results.

The polymer is initially relaxed into an equilibrium con
figuration using a fast nonlocal ‘‘reptation’’ Monte Carl
algorithm. Monomers are randomly moved from one end
the polymer to the other, which, for equilibrium geometrie
provides equivalent results to the local two-space dynam

Collapse of the polymer is then simulated using local d
fusive Monte Carlo dynamics, but without the excluded v
ume constraint. Simulations of a variety of models indica
that excluded volume does not significantly affect the kin
ics of collapse@4#. Monomers are no longer stopped fro
entering the neighborhoods of other monomers; they c
tinue to be required not to leave any neighbors behind. T
allows monomers in the same space~odd or even! to move
on top of each other, and thus aggregate. Aggregates of
mass occupy only a single lattice site, and are moved a
unit by the same dynamics used for monomers. The mas
an aggregate is set equal to the number of monomers loc
at that site. The probability of moving an aggregate is a
justed to be consistent with a diffusion constant that sca
by Stokes’ law for spherical bodies in three dimensions,D
;M 21/3. This represents the effects of hydrodynamics
individual aggregates, but does not include coupling of m
tion of different aggregates. One time interval consists
attempting a number of aggregate moves equal to the num
of remaining aggregates.

The end-to-end distances of polymer segments,r, were
measured as a function of the effective contour length,l. The
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effective contour length is the minimum number of lin
along the polymer that connect a monomer at one end of
segment with the other end of the segment. Since an ag
gate occupies only a single lattice site, interior bonds of

FIG. 1. ‘‘Snapshots’’ of the collapse of a single homopolym
of lengthN5500 monomers in 2D using the two-space algorithm
The plot is constructed by placing dots of areaM1/2 for an aggregate
of massM. This does not reflect the excluded volume of the agg
gates, which is zero during this collapse simulation. The fram
demonstrate the process of local smoothing that occurs prog
sively from short to long length scales. The behavior of the end
discussed in Refs.@3# and@4#. The primary effects of hydrodynam
ics are included in the simulations by applying Stokes’ law to
diffusion of aggregates.

FIG. 2. Plot of the internal polymer segment end-to-end dista
r, as a function of segment contour lengthl, and collapse time,t, in
both~a! two dimensions (2D), for t50, 25, 50, 100, 200, 400, 800
1600 and~b! three dimensions (3D), with t50, 25, 50, 100, 200,
400, 800. In both cases the polymer contained 500 monomers
results were averaged over 200 collapses.
e
re-
e

aggregate need not be counted, and it can be treated li
single monomer. The end-to-end distance is not exactly
Euclidean distance between the ends. Instead it is corre
defined as the minimum number of links needed to conn
the two ends by any curve in space. Due to the underly
lattice in our algorithm, a Manhattan metric, with the incl
sion of diagonals, is appropriate.

In addition to simulations of polymer collapse in thre
dimensions, we also performed simulations of polym
whose motion is confined to two dimensions, which are c
venient for pictorial illustration~Fig. 1!. These are not con
ventional two-dimensional simulations because of the w
known problems with hydrodynamics in two dimensio
@11#. Instead, they represent the dynamics of a polymer c
fined at an interface~e.g., between two fluids!. Thus the
polymer is confined to two dimensions while the hydrod
namics is three dimensional. In this case we haven50.75,
z53n, andD;M 21/2. The frames in Fig. 1 illustrate con
tour smoothing. Starting with short length scales, the po
mer becomes progressively smoother and approache
straight line.

-
s
s-

is

e

e
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FIG. 3. Plot of the scaling exponentd ln r/d ln l as a function of
time for different segment contour lengthsl. This figure was ob-
tained from Fig. 2 by calculating average slopes over a segm
length of 20.

FIG. 4. Plot of the rescaled end-to-end polymer segment
tance,r / l , as a function of the rescaled time,t/ l z. Data for both 2D
and 3D are shown. The coincidence of the curves is consistent w
validity of the universal scaling relationship, Eq.~1!.
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In Fig. 2 we show log-log plots of contour length~l! ver-
sus end-to-end distance~r! for both 2D and 3D simulations.
Initially the results are consistent withr; l n for a self-
avoiding random walk. As time progresses the polymer
comes smooth, resulting in a slope that approaches 1.
asymptotic behavior can be seen to occur earlier at the sh
est length scales.

Figure 3 shows the derivative, obtained from finite diffe
ences, as a function of time for different segment cont
lengths. For all segment lengths the derivative starts at
proximately n and approaches 1 as the collapse procee
The rate of collapse becomes progressively slower asl in-
creases. The scaling relation, Eq.~1!, predicts that the relax
ation time will scale withl as l z. Figure 4 shows the dat
following rescaling.r / l is plotted against the rescaled tim
t/ l z. The generally good coincidence of the different curv
confirms that the simulation obeys Eq.~1! @12#. An attempt
to use an asymptotic scaling exponent,r; l u, with u50.95,
led to a visibly poorer fit, as did small variations in the e
ponentz.

The excellent agreement with the expected universal s
ing relationship using the hydrodynamic exponent,z53n,
may be fortuitous because the simulations do not contain
full effects of hydrodynamics. Specifically they contain on
the effect of hydrodynamics on individual aggregates and
the coupling between aggregate motion.

In summary, we have found that polymer collapse d
plays a process of fractal smoothing that occurs first at
shortest length scales. Our simulations were found to b
good agreement with a universal scaling relationship. I
interesting to speculate that this may also apply to other f
tal systems where local smoothing processes occur. Se
groups have attempted to measure the self-affine scalin
horizontal transects of mountain ranges@13,14#. They found
that a unique fractal dimension,DH , cannot be assigned, bu
that the effective fractal dimension decreases with len
scale. For example, Dietler and Zhang@13# have performed
calculations for Switzerland, an area of 73104 km2, with a
resolution of 100 m. They obtainedDH'1.43 at length
scales below approximately 5 km, andDH'1.73 for larger
length scales. The data points could also lie on a continu
curve rather than two distinct scaling regimes. Thus the la
scape appears smoother at shorter length scales. Short-
smoothing may arise from processes, such as weathe
that also give rise to short-range correlations. Various fra
biological systems formed as a result of an initial develo
mental process may also suffer smoothing as part of agi

Since this work@15# was completed, a number of othe
works have explored the kinetics of collapse using simu
tions, analytic treatments, and scaling arguments. Timo
enko, Kuznetsov, and Dawson@16# studied the kinetics of
collapse using Monte Carlo simulations and a mean-fi
‘‘Gaussian self-consistent’’ approach. Their Monte Ca
.
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simulations are based upon an underlying lattice mo
which is similar to ours, however they do not move agg
gates as a unit. Since they only move individual monome
Monte Carlo rejection of moves causes the diffusion cons
of aggregates to decrease very rapidly with aggregate
~naively, it decreases exponentially@17#!. By contrast, in a
fluid, collective motion results in Stokes’ law diffusion
which we have included in our simulations. The slow diff
sion of aggregates in their simulations causes their result
be distinct from ours. From their figures it appears clear t
aggregates tend to pin the polymer contour. Their Gaus
self-consistent approach is analytically elaborate, howeve
is not clear from their analysis whether it treats correctly
diffusion of clusters. Moreover, since some equilibrium sc
ing laws are not correct in this method, it is hard to evalu
whether the kinetic properties are correct and their anal
does not clarify this point aside from the claim that the an
lytic results are in agreement with their Monte Carlo sim
lations.

Buguin, Brochard-Wyart, and de Gennes@18# have pre-
sented scaling arguments based on a model of local clu
‘‘pearls’’ forming during collapse close to theQ point in the
mean field regime where surface tension is the driving fo
of collapse. Pitard@19# has further considered the dynami
of collapse in this mean-field regime by discussing the eff
of tension along a polymer contour between two clust
~pearls! and extended the arguments to considerations o
string of clusters. These papers refer to a different reg
~i.e., the mean-field regime! than our analysis. Within this
regime they provide complementary insights about the str
ture of clusters or pearls during collapse and the formation
a globule, which is important both to the kinetics of collap
and to the eventual structure of the aggregate that is form
at the end. It is worth noting that our simulations do n
allow monomers, by motion along the polymer contour,
leave and join aggregates. The distribution of cluster si
may be affected by such motion. We note, however, that
essential results of this paper should not be changed by
distribution of monomers along the contour, and result
change in the distribution of the sizes of clusters, beca
they only affect the distribution of diffusion constants whic
vary only weakly with aggregate size. Moreover, the scal
law Eq.~1! does not refer to aggregate size and should no
affected.

Finally, Kantor and Kardar@20# have investigated the
properties of charged polymers and find their compact fo
exhibits a necklace shape with end aggregates and inte
diate aggregates forming as a function of the charge den
These results also display some interesting similarities
collapse behavior and further research may reveal a con
tion between their results and the studies of collapse.

We would like to thank A. Grosberg and M. Kardar fo
helpful discussions.
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