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Linear algebra is central to many algorithms in engineering, science, and machine learning; hence,
accelerating it would have tremendous economic impact. Quantum computing has been proposed for
this purpose, although the resource requirements are far beyond current technological capabilities.
We consider an alternative physics-based computing paradigm based on classical thermodynamics,
to provide a near-term approach to accelerating linear algebra. At first sight, thermodynamics and
linear algebra seem to be unrelated fields. Here, we connect solving linear algebra problems to
sampling from the thermodynamic equilibrium distribution of a system of coupled harmonic
oscillators. We present simple thermodynamic algorithms for solving linear systems of equations,
computing matrix inverses, and computing matrix determinants. Under reasonable assumptions, we
rigorously establish asymptotic speedups for our algorithms, relative to digital methods, that scale
linearly in matrix dimension. Our algorithms exploit thermodynamic principles like ergodicity, entropy,
and equilibration, highlighting the deep connection between these two seemingly distinct fields, and
opening up algebraic applications for thermodynamic computers.

Basic linear algebra primitives like solving linear systems and inverting
matrices are present in many modern algorithms. Such primitives are
relevant to a multitude of applications, for example optimal control of
dynamic systems and resource allocation. They are also a common sub-
routine of many artificial intelligence (AI) algorithms, and account for a
substantial portion of the time and energy costs in some cases. The most
common method to perform these primitives is LU decomposition, whose
time-complexity scales as O(d’). Many proposals have been made to
accelerate such primitives, for example using iterative methods such as the
conjugate gradient method. In the last decade, these primitives have been
accelerated by hardware improvements, notably by graphical processing
units (GPUs), fueling massive parallelization. However, the scaling of these
methods is still a prohibitive factor, and obtaining a good approximate
solution to a dense matrix of more than a few tens of thousand dimensions
remains challenging.

Exploiting physics to solve mathematical problems is a deep idea, with
much focus on solving optimization problems'”. In the context of linear
algebra, much attention has been paid to quantum computers®, since the
mathematics of discrete-variable quantum mechanics matches that of linear
algebra. A quantum algorithm’ to solve linear systems has been proposed,
which for sparse and well-conditioned matrices scales as log d. However, the
resource requirements’ for this algorithm are far beyond current hardware
capabilities. More generally building large-scale quantum hardware has
remained difficult’, and variational quantum algorithms for linear
algebra®"” have battled with vanishing gradient issues'"™".

Therefore, the search for alternative hardware proposals that can
exploit physical dynamics to accelerate linear algebra primitives has been

ongoing. Notably, memristor crossbar arrays have been of interest for
accelerating matrix-vector multiplications'*"”. Solving linear systems has
also been the subject of analog computing approaches'®.

Recently, we defined a new class of hardware, built from stochastic,
analog building blocks, which is ultimately thermodynamic in nature"”. (See
also  probabilistic-bit computers®™ and thermodynamic neural
networks™ ™ for alternative approaches to thermodynamic computing™).
Al applications like generative modeling are a natural fit for this thermo-
dynamic hardware, where stochastic fluctuations are exploited to generate
novel samples.

In this work, we surprisingly show that the same thermodynamic
hardware from Ref. 17 can also be used to accelerate key primitives in linear
algebra. Thermodynamics is not typically associated with linear algebra, and
connecting these two fields is therefore non-trivial. Here, we exploit the fact
that the mathematics of harmonic oscillator systems is inherently affine (i.e.,
linear), and hence we can map linear algebraic primitives onto such systems.
(See also Ref. 27 for a discussion of harmonic oscillators in the context of
quantum computing speedups.) We show that simply by sampling from the
thermal equilibrium distribution of coupled harmonic oscillators, one can
solve a variety of linear algebra problems.

Specifically we develop thermodynamic algorithms for the following
linear algebraic primitives: (i) solving a linear system Ax = b, (ii) estimating a
matrix inverse A~ (iii) solving Lyapunov equations™ of the form AT +
TAT =1 and (iv) estimating the determinant of a symmetric positive
definite matrix A. We show that if implemented on thermodynamic
hardware, these methods scale favorably with problem size compared to
digital algorithms. Our numerical simulations corroborate our analytical
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scaling results and also provide evidence of the fast convergence of these
primitives with the wall-clock time, with the speedup relative to digital
methods getting more pronounced with increasing dimension and condi-
tion number.

We remark that there is a connection between our thermodynamic
algorithms and digital Monte-Carlo (MC) algorithms that were developed
for linear algebra™”. Namely, our algorithms can be viewed as a
continuous-time version of these digital MC algorithms. However, we
empbhasize that the continuous time (i.e., physics-based rather than physics-
inspired) nature of our algorithms is crucial for obtaining our predicted
asymptotic speedup. Additionally, thermodynamic algorithms can be run
on a single device™ whereas efficient digital MC linear algebra requires

extensive parallelization™.

Results

Algorithmic scaling

In Table 1, we summarize the asymptotic scaling results for our thermo-
dynamic algorithms as compared to the best state-of-the-art (SOTA) digital
methods for dense symmetric positive-definite matrices. The derivations of
these results can be found in the Supplementary Information (Supple-
mentary Notes 1-5), and are based on bounds obtained for physical ther-
modynamic quantities, including correlation times, equilibration times, and
free energy differences. As one can see from Table 1, an asymptotic speedup
is predicted for our thermodynamic algorithms relative to the digital SOTA
algorithms. Specifically, a speedup that is linear in d is expected for each of
the linear algebraic primitives (ignoring a possible dependence of « on d).
We remark that the complexity of analog algorithms is subtle’” and depends,
e.g., on assumptions of how the hardware size grows with problem size. The
assumptions made to obtain our scaling results are detailed in the Methods
section. In what follows, we systematically present our thermodynamic
algorithms for various linear algebraic primitives.

Table 1 | Comparison of asymptotic complexities of linear
algebra algorithms

Problem Digital SOTA Thermodynamic
Linear system O(min{d*, d®/x}) O(dk’e?)

Matrix inverse 0O(a”) O(cPke™®)
Lyapunov equation O(cP) O(cPke™?)

Matrix determinant 0o@“) O(dxIn (x)%e72)

Here, d is the matrix dimension, k is the condition number, and € is the error. For our thermodynamic
algorithms, the complexity depends on the dynamical regime. Here we display the overdamped
dynamics which have marginally better complexity than the underdamped equivalents. For the
digital SOTA, the complexity of solving symmetric, positive definite linear systems, matrix inverse,
Lyapunov equation, and matrix determinant problems are respectively for algorithms based on:
conjugate gradient method®, fast matrix multiplication/inverse®, Bartels-Stewart algorithm®, and
LUP decomposition®. w ~ 2.3 denotes the matrix multiplication constant.

Solving linear systems of equations
The celebrated linear systems problem is to find x € R? such that

Ax = b, 1)

given some invertible matrix A € R**¢ and nonzero b € RY. We may
assume without loss of generality that the matrix A in Eq. (1) is symmetric
and positive definite (SPD); if A is not SPD, then we may consider the system
A"Ax = A"b, whose solution x = A~'b is also the solution of Ax = b. This will
affect the total runtime, but still allows for asymptotic scaling improvements
with respect to digital methods, in some cases. Also note that constructing an
SPD system from a generic one in this way results in the squaring of the
condition number, which influences performance. In what follows, we will
therefore assume that A is SPD. Now let us connect this problem to ther-
modynamics. We consider a macroscopic device with d degrees of freedom,
described by classical physics. Suppose the device has potential energy
function:

U(x) = %xTAx —b'x, (2)

where A € SPD,(RR). Note that this is a quadratic potential that can be
physically realized with a system of harmonic oscillators, where the coupling
between the oscillators is determined by the matrix A, and the b vector
describes a constant force on each individual oscillator. (We remark that
while Fig. 1 depicts mechanical oscillators, from a practical perspective, one
can build the device from electrical oscillators such as RLC circuits.)
Suppose that we allow this device to come to thermal equilibrium with its
environment, whose inverse temperature is 8= 1/kgT. At thermal equili-
brium, the Boltzmann distribution describes the probability for the oscillators
to have a given spatial coordinate: f(x) o exp(—BU(x)). Because U(x) is a
quadratic form, f{x) corresponds to a multivariate Gaussian distribution. Thus
at thermal equilibrium, the spatial coordinate x is a Gaussian random variable

x~N[AT'p, A7 (3)

The key observation is that the unique minimum of U(x) occurs where
Ax — b =0, which also corresponds to the unique maximum of f(x). For a
Gaussian distribution, the maximum of f(x) is also the first moment (x).
Thus, we have that, at thermal equilibrium, the first moment is the solution
to the linear system of equations:

(x) = A7'b. 4)

From this analysis, we can construct a simple thermodynamic protocol
for solving linear systems, which is depicted in Fig. 1. Namely, the protocol

_ ~ 1 rto+7
(l\D(?> : | Wait for z (@) ~ = too dt = (t)
S equilibrium Yo~ L [T dta()xT (¢
A b time to t STt =Bz (0)
/ kT Enviroment
\ Estimate
9}/..0_3 and Integrate solution
LTy extract dynamics
m trajectory for time 7 (x) = A1
=i
Enviroment A _ ﬂzs

Fig. 1 | Diagram of our thermodynamic algorithm for solving linear systems and
inverse estimation. The system of linear equations, or the matrix 4, is encoded into
the thermodynamic hardware, the system is then allowed to evolve until the

stationary distribution has been reached, when the trajectory is then integrated to
estimate the sample mean or covariance. This gives estimates of the solution of the
linear system or the inverse of A respectively.
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Fig. 2 | Equilibration of the thermodynamic system. The process of equilibration is
depicted on the single-trajectory level (left) and on the distribution level (right). The
trajectory dynamics are described by the overdamped Langevin equation and the
distributional dynamics by the Fokker-Planck equation®. The system displays

1

ergodicity, as the time average of a single trajectory (blue curve, left) approaches the
ensemble average (dots, right) in the long-time limit. Time and the coordinate vector
(%1, x,) are in arbitrary units.

involves realizing the potential in Eq. (2), waiting for the system to come to
equilibrium, and then sampling x to estimate the mean (x) of the dis-
tribution. This mean can be approximated using a time-average, defined as

to+T
s = [ ), 6

0

where t, must be sufficiently large to allow for equilibration and 7 must be
sufficiently large for the average to converge to a desired degree of precision.
The eventual convergence of this time average to the mean is the content of
the ergodic hypothesis™”, which is often assumed for quite generic ther-
modynamic systems. It should be mentioned that the mean could also be
approximated as the average of a sequence of samples; however the inte-
gration approach has the advantage that it can conveniently be implemented
in a completely analog way (for example, using an integrator electrical
circuit), which obviates the need for transferring data from the physical
device until the end of the protocol.

Figure 2 shows the equilibration process for both a single trajectory
(left panel) and the overall distribution (right panel). One can see the ergodic
principle illustrated in this figure, since the time dynamics of a single tra-
jectory at thermal equilibrium are representative of the overall ensemble.

The overall protocol can be summarized as follows.

Linear system protocol.
* Given a linear system Ax = b, set the potential of the device to

1
U(x) = ExTAx —b'x (6)
at time t=0.

* Choose equilibration tolerance parameters ¢, €y € R*, and choose
the equilibration time

to =1, ()

where 7, is computed from the system’s physical properties or using
heuristic methods based on Egs. (28), (30). Allow the system to evolve
under its dynamics until ¢ = ¢, which ensures that H (x) — A’le/ I
AT'b || <goand |2 —BTTATY|/ I BTTAT! || <egy.
* Choose error tolerance parameter &, and success probability P,, and
choose the integration time

T>T, (8

where T is computed from the system’s physical properties, Eq. (28)
or (30). Use an analog integrator to measure the time average

ty+7
X = % /, dt x(t), )

0

which satisfies [|Ax — b||/ || b || <e, with probability at least Pg.

In order to implement the protocol above, the necessary values of
and 7 must be identified, which requires a more quantitative description of
equilibration and ergodicity. To obtain such a description, a model of the
system’s microscopic dynamics may be introduced. Given that the system
under consideration is composed of harmonic oscillators in contact with a
heat bath, it is natural to allow for damping (i.e., energy loss to the bath) and
stochastic thermal noise, which always accompanies damping due to the
fluctuation-dissipation theorem™’. The Langevin equation accounts for
these effects, and specifically we consider two common formulations, the
overdamped Langevin (ODL) equation and the underdamped Langevin
(UDL) equations. In the Methods section, we provide additional details on
ODL and UDL dynamics, and we provide explicit formulas for #, and 7 for
the overdamped and underdamped regimes.

Estimating the inverse of a matrix
The results of the previous section rely on estimating the mean of x, but
make no use of the fluctuations in x at equilibrium. By using the second
moments of the equilibrium distribution, we can go beyond solving linear
systems. For example it is possible to find the inverse of an SPD matrix A. As
mentioned, the stationary distribution of x is NTA™'b, ' A~], meaning
the inverse of A can be obtained by evaluating the covariance matrix of x.
This can be accomplished in an entirely analog way, using a combination of
analog multipliers and integrators. By setting b= 0 for this protocol, we
ensure that (x) = 0, so the stationary covariance matrix is, by definition

¥, = lim (x(t)x" (). (10)

t—o00

In order to estimate this, we again perform time averages after allowing the
system to come to equilibrium

— 1 ty+T T
Yo ax! = - dt x(t)x ' (t). (11)
ty

It is therefore necessary to have an analog component which evaluates the
product x{#)x;(t) for each pair (i, j), resulting in & analog multiplier
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components. Each of these products is then fed into an analog integrator
component, which computes one element of the time-averaged covariance
matrix

1 to+7
PIPIR ;/l dt x,()x(t). (12)

While the equilibration time is the same as for the linear system pro-
tocol, the integration time is different, because in general the covariance
matrix is slower to converge than the mean. We now give a detailed
description of the inverse estimation protocol, assuming ODL dynamics
(the corresponding results for underdamped dynamics can be found in
Supplementary Note 3). In the Methods section, we provide explicit
formulas for 7, and 7 for the Inverse Estimation Protocol. We remark
that our matrix inversion algorithm is a special case of our general
algorithm for solving Lyapunov equations; the latter is presented in
Supplementary Note 5.

Inverse estimation protocol.
* Given a positive definite matrix A, set the potential of the device to

U(x) = %xTAx (13)

at time t=0.

+ Choose equilibration tolerance parameter 5, € R, and choose the
equilibration time

(14)

where t, is computed from the system’s physical properties, Eq. (33)
or (34). Allow the system to evolve under its dynamics until ¢ = t,,
which ensures that |[Z — 7' A7'b||/ | B7'AT" || <&y
* Choose error tolerance parameter &5 and success probability P,, and
choose the integration time

2T,

(15)

where T is computed from the system’s physical properties, Eq. (33)
or (34). Use analog multipliers and integrators to measure the the
time averages

1 T
%= [ o

=

(16)

which satisfies || xxT —B'ATY I/ | BTPATY| <6y with prob-
ability at least P,.

Estimating the determinant of a matrix
The determinant of the covariance matrix appears in the normalization
factor of a multivariate normal distribution, whose density function is

Fus@) = @y Pz exp (—%xTzflx), (17)

and it is therefore natural to wonder whether hardware which is capable of
preparing a Gaussian distribution may be used to somehow estimate the
determinant of a matrix. This can in fact be done, as the problem is
equivalent to the estimation of free energy differences, an important
application of stochastic thermodynamics. Recall that the difference in free
energy between equilibrium states of potentials U, and U, is*’

d —BU,(x)
AF=F, —F = —p ln(fL).

f dx e_ﬁul(x) (18)

Suppose the potentials are quadratic, with U, (x) = x"A;xand U,(x) = x' A,x.
Then each integral simplifies to the inverse of a Gaussian normalization

factor,
/ dxe PV = 2m)??, [BMAY, (19)
SO
_ 1A - |4,
AF =—f7'In 2 ) =g tn( /2L ). (20)
F ( ) =7

This suggests that the determinant of a matrix A; can found by comparing
the free energies of the equilibrium states with potentials U; and U, (where
A, has known determinant), and then computing

A, | = e 4|4, 1)
Fortunately, the free energy difference AF can be found, assuming we have
the ability to measure the work which is done on the system as the potential
U(x) is changed from U to U,. According to the Jarzynski equality*, the free
energy difference between the (equilibrium) states in the initial and final
potential is

e FAF = (e7FV), (22)
where ( - ) denotes an average over all possible trajectories of the system

between time f = 0 and time ¢ = 7, weighed by their respective probabilities.
This may be approximated by an average over N repeated trials,

| &
~BAF o, AW — - —BW,
e e P _N]E:l e PV, (23)

However, while Jarzynski’s relation may be applied directly to estimate the
free energy difference, this estimator has large bias and is slow to converge.
Far more well-behaved estimators have been found based on work
measurements. For simplicity, we here provide the expression based on
Jarzynski’s estimator, while in the Methods section and in Supplementary
Note 4 we refer to more suitable estimators. In summary, the determinant of
A is approximated by

A~ (77) 14,1, 24)

In practice we will generally be interested in the log determinant to avoid
computational overflow. This is

In(|4,]) ~ zm(ﬁ) +1n(14,]). (25)

It is shown in Supplementary Note 4 that to estimate the log determinant to
within (absolute) error &, with probability at least Ps, the total amount of
time required is roughly

2
TR Mln szs/zegol %—i— 1
6LD(1 - P5) 4(max

)Tr(UD) = O(d In (x)®).
(26)
We also present numerical simulations of a protocol for determinant esti-

mation that does not include directly measuring the work in Supplementary
Note 4.
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Fig. 3 | Error of our thermodynamic algorithms as a function of the analog
integration time for different dimensions. Matrices A are drawn from a Wishart
distribution with 2d degrees of freedom. Vertical dashed lines are the times ¢ at
which error goes below a threshold (horizontal dashed line). Inset: Crossing time ¢
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asafunction of dimension d. A For the linear systems algorithm, a linear relationship
between dimension and the analog dynamics runtime is observed. B For the matrix
inversion algorithm, a quadratic relationship between dimension and the analog
dynamics runtime is observed.

Convergence and comparison to digital algorithms
Convergence. We now present several numerical experiments to cor-
roborate our analytical results. Figure 3A displays the convergence of the
absolute error, || ¥ — A~'b|| where ||. || denotes the 2-norm, as a function
of time for our thermodynamic linear systems algorithm. This plot shows
that the expected convergence time to reach a given error is linearly
proportional to the dimension of the system, which is in agreement with
the analytical bounds that we presented above.

Similarly, let us examine the performance of the inverse estimation
protocol. We employ the absolute error on the inverse, || A~ — A7
where || - ||z denotes the Frobenius norm. Figure 3B shows the convergence
of the error as a function of the analog dynamics time for our thermo-
dynamic inverse estimation algorithm. We see that the expected con-
vergence time to reach a given error is quadratic ( d%) in the dimension, in
agreement with the analytical bounds presented above.

Comparison to digital algorithms. Another question of key importance
is how the thermodynamic algorithm is expected to perform in practical
scenarios, i.e., when being run on real thermodynamic hardware. Due to
the hardware being analog in nature, this involves additional digital-to-
analog compilation steps. To investigate this question, we consider a
timing model for the thermodynamic algorithm, based on the hardware
proposal described Ref. 17 (See Supplementary Note 2 for a brief sum-
mary of this hardware, whose dynamics correspond to the overdamped
regime as in Eq. (27)). This model includes all the digital, digital-to-
analog and analog operations needed to solve the problem, starting with a
matrix A stored on a digital device, and sending back the solution x from
the thermodynamic system to the digital device. Note that this includes a
compilation step that scales as O(d”), which is absent for the digital
methods; Cholesky decomposition and the conjugate gradient method
are run on a digital computer, and the initial matrix is stored on that same
computer, hence there is no transfer cost, unlike for the thermodynamic
algorithm. Assumptions about this model are detailed in the Methods
section. Note that analog imprecision is not taken into account in these
experiments, and is the subject of further investigations®.

Figure 4 plots the absolute error for solving linear systems as a function
of time for the thermodynamic algorithm (TA), the conjugate gradient (CG)
method, and the Cholesky decomposition (which is exact). In panels (A-C)
we explore how the methods converge with varying « and d. While at low
dimensions our method performs poorly with respect to the Cholesky
decomposition and only slightly better than CG, it becomes very competi-
tive for dimensions d = 1000 and d = 5000. Panels (d) - (f) show the errorasa
function of time for different condition numbers, at fixed dimension. One
can see that as x grows (as conditioning is worse) our method becomes more

competitive with CG. This suggests that, even in practical scenarios where
we account for realistic computational overhead issues, our thermodynamic
linear systems algorithm can outperform SOTA digital methods, especially
for large d and large «.

Figure 4 also shows that the thermodynamic algorithm performs
significantly better than the CG method at early times, although the CG
method ultimately achieves a higher quality result for later times. This
suggests that the thermodynamic algorithm is ideally suited to providing
an approximate solution in a short amount of time. Nevertheless, we note
that the effective temperature of the thermodynamic hardware is an
important parameter, and one can lower this temperature to achieve
higher precision solutions from the thermodynamic hardware, as can be
seen from the curves in Fig. 4.

Using a timing model similar to that employed for the linear systems
protocol, we performed a runtime comparison to Cholesky decomposition
for the task of matrix inversion. The results are shown in Fig. 5, where the
error is plotted as a function of physical time for dimensions 100, 1000, and
5000. The dashed lines represent the corresponding times for Cholesky
decomposition, for given dimensions. We see that as the dimension grows,
the advantage with respect to the Cholesky decomposition also grows, thus
highlighting a practical thermodynamic advantage. Our method for the
inverse estimation therefore has the advantage of having well-defined
convergence properties as a function of dimension and condition number
(compared to other approximate methods for inverting dense matrices,
which do not have well defined convergence properties), as well as leading to
reasonable error values in practical settings.

Overall, these numerical experiments highlight the potential utility of
thermodynamic hardware by showing the opportunity for speedup over
SOTA digital methods, based on a simulated timing model of the ther-
modynamic device.

Discussion
Various types of physics-based computers have been devised, which are
supposed to expedite calculations by using physical processes to evaluate
expensive functions*”**. These devices (which include quantum compu-
ters and a number of distinct analog architectures) have been shown to offer
theoretical advantages for solving certain problems, including linear systems
of equations, but they have not found common use commercially. A key
obstacle to harnessing the power of physical computing is that fluctuations
in the system’s state tend to cause errors that compound over time, and
which cannot be corrected in a straightforward way™ (as can be done for
digital computers).

For this reason, we have considered thermodynamic algorithms,
which treat the naturally-present fluctuations as a resource, or at the very
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Fig. 4| Comparison of the error ||x — A~'b|| of the thermodynamic algorithm
(TA) to solve linear systems with the conjugate gradient method and Cholesky
decomposition as a function of total runtime. a-c The TA is shown for different
values of kgT (units of 1/y) for each dimension in {100, 1000, 5000}. Random
matrices are drawn from the Wishart distribution and then mixed with the

identity such that their condition numbers are respectively 120, 1189, 5995.
d-f Same quantities with a fixed condition number «, respectively 199, 1190, and
7880 for fixed dimension d = 1000. Calculations were performed on an Nvidia
RTX 6000 GPU.
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Fig. 5 | Comparison of the error of the thermodynamic algorithm (TA) to invert
matrices with the Cholesky decomposition as a function of total runtime.
Dimensions d = 100, 1000, 5000, respectively in light green, light blue, and purple,
are shown for the thermodynamic algorithm (solid lines) and the Cholesky
decomposition (dashed lines). Here the condition numbers are respectively {120,
1189, 5995}. Calculations were performed on an Nvidia RTX A600 GPU.

least are indifferent to them. In fact, we have introduced three distinct
classes of thermodynamic algorithms: first-moment based, second-
moment based, and all-moment based algorithms. Other thermo-
dynamic algorithms will likely be discovered making use of third and
higher moments, implying that such methods form a hierarchy. In some
sense, using higher moments allows us to solve “harder” problems, for
example inverting a matrix (which uses the second moments) is harder
than solving a linear system of equations (which uses the first moment).
Whether a precise relationship can be found between computational
hardness and the hierarchy of thermodynamic algorithms is currently an
open question.

A key property of the system we have studied here that makes it
amenable to thermodynamic computing is that the system reaches equili-
brium quickly, and the moments of its equilibrium distribution can be
efficiently approximated using time averages due to its ergodicity. In
extending these methods to other types of dynamics, it is desirable to
identify other classes of systems that also equilibrate quickly and for which
time averages converge quickly to equilibrium moments. As there is some
evidence that this is the case for certain classes of classical chaotic systems as
well as quantum systems*”*’, we anticipate that thermodynamic algorithms
may be developed in these settings as well.
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Another open question concerns the optimality of these new thermo-
dynamic algorithms. Our analysis implies that, while the time and energy
costs of linear-algebraic primitives are negotiable, the product of time and
energy necessary for a computation is fundamentally constrained (see
Methods). It is therefore of interest to search for thermodynamic algorithms
which achieve lower values of the energy-time product for these computa-
tions, and also to see whether such constraints may apply to other problems as
well. We anticipate that non-equilibrium thermodynamics will be a crucial
tool in exploring such resource tradeoffs for computation. For example, we
have used the fact that a thermodynamic distance may be defined between
equilibrium configurations of a system, and this distance determines the
minimal amount of dissipated energy necessary to transition from one
configuration to another in a finite time*~*’; the shorter the time of transition,
the more dissipation must occur. Perhaps, then, the search for algorithms
which have minimal energy-time product may be framed as a variational
problem of minimizing length on the thermodynamic manifold. Although
proofs of optimal algorithmic performance are notoriously hard to find in
digital computing paradigms™, unavoidable resource tradeoffs are relatively
mundane in thermodynamic analyses™, suggesting that computational cost
may be fruitfully studied within the thermodynamic computing paradigm.

Aside from the theoretical questions mentioned, clearly the task of
actually implementing our algorithms remains an important one. Recently,
we created an electrical thermodynamic computing device’” on a printed
circuit board and used it to demonstrate the thermodynamic matrix inver-
sion algorithm presented here, inverting 8 by 8 matrices using 8 coupled
electrical oscillators. A potential next step would be to experimentally verify
our predicted scaling of integration time with dimension (e.g., linear scaling
for linear systems and quadratic scaling for matrix inversion), thus con-
firming our predicted speedup over digital methods. We anticipate that other
researchers may independently seek to verify our results experimentally,
leading to a rapid development of thermodynamic hardware. As a result, we
predict that these methods will become appealing alternatives to digital
algorithms, particularly in settings where it is desirable to trade some accu-
racy for better time and energy scaling.

In addition to our work’s direct impact, the broader impact is laying the
theoretical, mathematical foundations for the emerging paradigm of ther-
modynamic computing™. Our work provides the first mathematical analysis,
as well as the first numerical benchmarks, of potential speedups for ther-
modynamic hardware. Thus we have taken the somewhat vague notion of
thermodynamic computing and made it concrete and precise, with a clear set
of applications. Moving forward, we expect new applications to be dis-
covered, beyond linear algebra, since one can simply modify the potential
energy function U(x) to solve, e.g., non-linear algebraic problems. There is
also the exciting prospect of running multiple applications, such as the linear
algebra ones here and the probabilistic AI ones discussed in Ref. 17, on the
same thermodynamic hardware, providing the user with a flexible pro-
gramming experience. One can envision that much of the amazing tech-
nological developments (compilers, simulators, programming languages,
etc.) that have happened in quantum computing will likely happen for
thermodynamic computing in the near future.

Methods

Timing parameters for overdamped and underdamped regimes
Linear systems. For our linear systems algorithm, the overdamped
Langevin (ODL) equation takes the form:

dx = — %(Ax — bydt + N[0,2y~'p " dt], (27)

where y>0 is called the damping constant and f3=1/ksT is the inverse
temperature of the environment. The system has a physical timescale (which
is clear from dimensional analysis) that we call the relaxation timert, = y/||Al|.
The condition number of A is k¥ = &, /., Where a;...a; are the
eigenvalues of A. With these definitions, we arrive (see Supplementary Note
2 for derivation) at the following formulas for £, and T in the overdamped

case, which can be used in the linear systems algorithm:

2k2d || A

giorea—-py ™ @

~ 1 ~
ty, = max{m’r ln(;cs;ol) 15 KT 1n(2K£§01) }, T=

The underdamped model is instead described by the UDL equations,

L — —(Ax—bydi— L -1
de=pdt,  dp=—(Ax— b)dt — ) pdt + N0,2yp 1]

(29)

We define § = y/2M, w; = | /o; /M, and {;=&/w;. Moreover, a timescale
T,up) can be identified for the underdamped system which is analogous to
the quantity 7, associated with the overdamped system. In particular, we
define 7,up) = ¢ . We introduce a dimensionless quantity y as well, which is
x=@0+¢&/ wmm)l/ 2(1 = &/w,y,) /2. With these definitions, we arrive
(see Supplementary Note 3 for derivation) at the following formulas for the
timing parameters in the underdamped case:

T, = max{‘rr(UD) ln<K1/2)(e;01) ,5 Teupy In (X2K3/ngol [4(%““ + 1] ) },
=~ _ _2J/wyd|Al
T = BlblPe20—p,) Tr(UD):

(30)

An important distinction between the ODL and UDL regimes is that
the random variable x undergoes a Markov stochastic process in the ODL
case, but is non-Markovian in the UDL case™”. The simple interpretation of
this non-Markovianity is that the underdamped system exhibits inertia,
which is a form of memory-dependence. This inertia has a non-trivial (and
sometimes beneficial) effect on the algorithm’s overall performance, which
is apparent from the scaling results in Table 1.

Remark on dependence on the norm of A. Note that the norm ||A]|
appears in Eq. (28) explicitly in the expression for 7 and also enters
through the definition of 7,. We see that 7, does not depend on ||A]|
because the two factors cancel, but £, is inversely proportional to ||A]|. In
order to eliminate the dependence on the norm of ||A[|, we could simply
divide A by its norm before applying the algorithm. Then, upon obtaining
the solution to the linear system x = A~'b, the vector x would be divided by
||A]l to recover the solution to the original problem. However, the
computation of ||A|| would have a larger polynomial time complexity
than our algorithm, so this would eliminate our polynomial speedup.
Instead, we can divide A by its largest diagonal element, defining
A7 = ayA/ max{ diag (A)}, where aj is a constant with units of y/t. Now
note that

1 1
| A1 > o tr (A} > - max(diag (4) = 2.

) (31)

As a lower bound on ||A|| gives an upper bound on #,, we may substitute
| A" || into the above equation for #,, yielding the following:

7= vd —1) 1,4 -1
t, = max{;c% 1n<1<£#0 ) L ln(ZKsZO)},

T=

23d (32)
Blbe20—P,) "

The linear system resulting from normalizing A by its largest diagonal
element can therefore be solved in linear time. When the solution x’ is
found, it can then be divided by the largest diagonal element of A to obtain
the solution to the original problem. A similar argument applies to Eq. (30)
for the underdamped case.

Matrix inversion. The timing parameters for the inverse estimation
protocol (as derived in Supplementary Notes 2 and 3) are, for the
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overdamped case,

4xd(d + 1)
(1 - Ps)sg v

~ 1 ~
ty = Rl In(2ke5,), T= (33)

and for the underdamped case

+1 —— .-
(1—Pye "

(34)

~ 1 5 3/ — 1
ty = ETr(UD) In (X © 8201 4(2
max

) _ 4kd(d+1)
] T=

Energy-time tradeoff

Note the appearance of the ratio ||A]|/||b||* in the time required to solve a
linear system given by Eqs. (28) and (30). It is tempting to imagine that
one might solve the system faster simply by multiplying b by some
constant c. Then, the time required to solve the system is apparently
reduced by a factor of ¢?, and the solution to original problem is obtained
(up toafactor of ¢). A similar approach would be to multiply A by a small
number; of course, in practice it is not possible to solve linear systems of
equations in vanishingly short periods of time, which is reflected in an
energy-time tradeoff. As we explain in Supplementary Note 2, there is an
energy cost associated with initializing the system proportional to
b"A~'b, and this results in a re-formulation of Eqs. (28) and (30) as lower
bounds on the product of energy and time. If £ is the energy required to
solve the system Ax = b, and 7 is the necessary time, then we have, in the
overdamped case:

2€*d
>
Er> 20— Ps)/j T, (35)
and in the underdamped case:
Er> m (36)

—1
T .
8)2((1 _ P‘g)ﬁ r(UD)

This fundamental energy-time tradeoff appears naturally within this
computational model. While digital computations can often be accelerated
by investing more energy (for example, via parallelization), it is generally less
obvious what exact form the relationship between time and energy cost
takes, suggesting that thermodynamic algorithms may offer a new and
useful perspective on algorithmic complexity.

Detailed algorithmic scaling

In the main text, we presented a simplified version of the detailed table
shown in Table 2. Table 2 breaks down the scaling into the overdamped and
underdamped regimes, whereas Table 1 just takes the best scalings of our
algorithms. The latter is essentially the scaling associated with the under-
damped regime. However, in practice, there can be some engineering
advantages to working in the overdamped regime, and hence it is useful to
see the complexities of both regimes.

Table 2| Asymptotic complexities of linear algebra algorithms,
including overdamped and underdamped regimes

Problem Digital SOTA This work This work
(Overdamped) (Underdamped)

Linear System  O(min{d“, a2/x}) O(dk’e™?) O(ydk*?e72)

Matrix Inverse  O(d“) O(d’ke™?) O(yd*k*c?)

Lyapunov o) O(d’ke™?) O(yd*k*c?)

Equation

Matrix 0(d*) O(dxIn (x)°¢2) O(ydxIn (x)®e2)

Determinant

For our thermodynamic algorithms, the complexity depends on the dynamical regime, i.e., whether
the dynamics are overdamped and underdamped, as shown in this table.

Assumptions
A number of assumptions are made in the analytical derivations of the
findings presented in the Results section. Certain aspects of the problem
have been idealized in order to reveal the fundamental performance char-
acteristics of the thermodynamic algorithms. The main assumptions are the
following
¢ The dynamics of the system may be described by the ODL equation or
the UDL equations.
 The potential function U(x), and in particular the matrix A and vector
b, can be switched instantaneously between different values.
 The potential energy function U(x) can be implemented to arbitrary
accuracy.
* Before a protocol begins, the system may be taken to be in an equili-
brium distribution N'T0, 87" || A[71].

Numerical simulations

We outline the methods used for our numerical simulations of the ther-
modynamic algorithms. In general, we simulated the overdamped system
dynamics because the performance is similar to the underdamped case, and
the overdamped system is more numerically stable. The ODL equation,
dx = —Ax + N0, Bdt], is often written using an It6 integral®:

t
x(t) = e A'x, + / dt' e A= Ldw (37)
0

where LLT = /3, and in this form it is apparent that the deterministic and
stochastic parts of the evolution (the first and second terms above) can be
evaluated separately. As this is a Gaussian process, the corresponding
Fokker-Planck dynamics are fully captured by the behavior of the first and
second moments, which can be evaluated directly using the well-known
solution to the Ornstein-Uhlenbeck (OU) process. The JAX®' library was
used to simulate the system at high dimensions, leveraging efficient
implementations of matrix exponentials, diagonalization, and convolution
to evaluate the various terms in the solution of the OU process. In what
follows, we describe the timing model employed for benchmarking our
thermodynamic algorithm, assuming an implementation using electrical
circuits.

Timing model. To obtain the comparisons to other digital methods, we
considered the following procedure to run the TA on electrical hardware.
For more details on our model for the hardware implementation we refer
the reader to Supplementary Note 2. We take the RC=1/y = 1us, which
sets the characteristic timescale of the thermodynamic device. The
determinant estimation procedure is excluded here for clarity, as it
involves directly measuring work, which may involve a more complicated
hardware proposal.

1. Compute the values of the resistors {R
encodes the A matrix.

2. Digital-to-analog (DAC) conversion of the 7 matrix and the b vector
with a given bit-precision.

3. Let the dynamics run for t, (the equilibration time). Note that for
simulations this time was chosen heuristically by exploring con-
vergence in the solutions of the problem of interest.

4. Switch on the integrators (and multipliers for the inverse estimation)
and let the system evolve for time 7.

5. Analog-to-digital (ADC) conversion of the solution outputted from
the integrators sent back to the digital device.For step 1, we measured
the time for the digital operation to be performed, and for the other
steps we estimated the time, based on the following assumptions:

* 16 bit-precision

* 5000 ADC/DAC channels with a sampling rate: 250 Msamples/s.
R=10’Q, C=1nF, which means RC =1ps is the characteristic
timescale of the system.Finally, note that in all cases that were inves-
tigated, the dominant contribution to the total runtime was the digital
compilation step. This step includes O(d”) operations and involves

i R’} entering the matrix 7 that
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conversion of the matrix A to 7, which is detailed in Supplementary

Note 2. Hence some assumptions about the DAC/ADC may be relaxed

and the total thermodynamic runtime would be similar. The RC time

constant may also be reduced to make the algorithm faster.

Also note that the polynomial complexity of transferring data to and
from the thermodynamic computing device should be considered. For the
matrix inversion, Lyanpuov equation, and determinant estimation algo-
rithms this does not cause any issue, as the amount of data to be transferred
scales with &, which is the same as the time-complexity of the algorithms.
For the linear system algorithm, in order to preserve the O(d) time com-
plexity it is necessary for the uploading of the matrix to hardware to be
parallelized across O(d) channels, in which case the read/write operations do
not affect the polynomial time complexity. An instructive example of a
thermodynamic algorithm working as part of a hybrid digital-analog
algorithm is presented in Ref. 62, where the linear systems algorithm is used
as a subroutine in a second-order optimization algorithm.

Noise resilience and error mitigation

To the extent that a circuit can be modeled by equilibrium thermodynamics,
and the form and parameters of its Hamiltonian are known, the approach of
thermodynamic computing is fully resilient to thermal fluctuations (for
example, Johnson-Nyquist noise). However, there are various effects that
can cause the continuous-variable Hamiltonian description to be invalid; for
example at small currents the discretization of charge leads to significant
shot noise which is not accounted for in our formalism. Circuit elements
also do not behave in a completely idealized way, for example a capacitor will
generally have a capacitance that depends on the applied voltage, leading to a
Hamiltonian with higher order terms. Moreover, even if the form of the
Hamiltonian is known, the parameters appearing in it cannot be known
with certainty, and impedances of circuit components do not exactly match
their nominal values, an issue called component mismatch. Finally, even if
the electrical components behaved in a completely ideal way and their
impedances were known exactly, we may only vary the parameters of a
circuit with finite precision; for example, with B bits of precision, we can
choose between 2 possible values for a capacitance in the circuit. Although
thermodynamic algorithms offer an appealing resilience to thermal noise, it
is necessary to create strategies to mitigate these other sources of error.

In order to address the problems described above, we have begun a
comprehensive program of identifying sources of error in thermodynamic
computations and finding methods of mitigating these sources of error.
Errors caused by imprecision of parameter specification can be significantly
reduced using the method proposed in*, which is based on stochastically
rounding component values between those allowed by the implementation.
This method can be used to address imprecision errors, and indeed its
experimental implementation resulted in 20% error reduction for matrix
inversion"’. However, it does not help reduce errors caused by component
mismatch, so additional strategies are needed. We are presently researching
approaches to mitigating component mismatch error, which will be covered
in forthcoming work.

Nonlinear behavior of components may prove the most difficult source
of error to address, as it involves the form of the Hamiltonian rather than just
its parameters, and so cannot be fixed using a simple calibration procedure.
To some extent, the degree of nonlinear behavior can be controlled by
reducing the amplitude of signals, as nonlinearity typically becomes
stronger as the amplitude increases. Unfortunately, reducing the signal
amplitude comes with the drawback that a more sensitive measurement
device would be needed to obtain the same accuracy. Strategies for reducing
error caused by nonlinearities are therefore of great practical importance.

Data availability

All data reflected in our results was generated in a way that is clear from the
text, and the results can be reproduced by simulating the algorithms as they
are described. No external data was used. Results from specific simulations
are available upon request.
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