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Broadly speaking, an information measure is any function of one or more probability distributions. An en-
tropy is an information measure that have units of entropy— negative logarithms of probabilities, or a linear
combination of the same. (Although in many cases, tradition doth dictate that an entropic measure be re-
ferred to as an information, e.g. “mutual information” rather than “mutual entropy”.) In this brief survey
we’ll explore the menagerie of entropic and information measures that have been developed to characterize
classical probability distributions.
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0 Notes on notation and nomencla-
ture

Ensembles We’ll use upper case letters for ensembles,
A, B, C, etc. An ensemble (or probability space) consists
of a complete and mutually exclusive set of propositions,
{Aa}, indexed by the sample space a ∈ ΩA. The probability
of a proposition is written as P(Aa), and the conditional
probability as P(Aa | Bb). For instance, Aa could repre-
sent the propositions {A = a} that a randomvariableAhas
taken on the value a. Any sum is implicitly over the entire
relevant sample space. When different ensembles have
different samples spaces we’ll use corresponding lower
case letters for samples, a for A, b for B, and so on. But
when ensembles share the same sample space, we’ll use
some other lower case letter, typically x,y, z. For instance,
compare the definitions of mutual information (6) (dif-
ferent sample spaces) with relative entropy (16) (same
sample spaces). We will not employ herein the common
shorthand of labeling distributions by the sample alone,
e.g. p(x) for P({A = x}), precisely because we need to deal
withmultiple distributionswith the same sample space in
the same expression.

pA(x) = P(Ax) = P({A = x}) (1)

Expectation [80, 81] The expectation operator E de-
notes the ensemble average of a function.

E
[
f(A)

]
=

∑
a

P(Aa) f(Aa)

In physics we often write the expectation as ⟨f(A)⟩ or
⟨f(a)⟩. In the last case we are using the same, potentially
ambiguous, shorthand as commonly used for probabili-
ties, i.e. P(a) for P(Aa).
Most of the information measures discussed herein

could be expressed using the expectation operator, but for
maximum clarity we make the averages explicit. For ex-
ample the Shannon entropy (2) is the ensemble average
of the specific (or point-wise) entropy − ln P(Aa). (§9).

S(A) = E
[
− ln P(Ax)

]
= −

∑
x

P(Ax) ln P(Ax)

Collections of ensembles Since we have used sub-
scripts to index propositions, we’ll use superscripts to in-
dex collections of ensembles, A = {A1,A2, . . . ,A|A|}. We
never need to take powers of ensembles or propositions,
so there is little risk of ambiguity. Other useful notation
includes P(A), the power set of A (the set of all subsets);
|A|, the set cardinality; ∅ for the empty set; andA\A, the
set complement (difference) of A.

Naming and notating Information measures are given
CamelCased function names, unless an unambiguous
short function name is in common usage. Commas be-
tween ensembles (or propositions) denote conjugation
(logical and); a colon ‘:’ the mutual information (6)
“between” ensembles; a double bar ‘∥’ the relative en-
tropy (16) of one ensemble “relative to” another; a semi-
colon ‘;’ for any other comparison of ensembles; and a bar
‘|’ denotes conditioning (“given”). We’ll use the operator
precedence (high to low) ‘,’, ‘:’, ‘|’, ‘∥’, ‘;’ to obviate exces-
sive bracketing [1]. Samples spaces are the same on ei-
ther side of double bars ‘∥’ or semicolons ‘;’, but different
across bars ‘|’ and colons ‘:’. Measures are symmetric to
interchange of the ensembles across commas and colons,
i.e. S(A,B,C) is the same as S(C,B,A) and I(A : B : C) is
the same as I(B : C : A).

Information diagrams Information diagrams (See
Figs. 1, 2, 3 and 4) are a graphical display of multivariant
Shannon information measures [23, 47, 72].

A
B C

D

I(A,B : C | D)

These are not Venn-diagrams per se, since the individual
regions can have positive or negative weight. The regions
of an information diagram corresponding to a particular
information measure can be deduced by mapping joint
distributions ‘A,B’ to the union of setsA∪B, mutual mea-
sures ‘A : B’, to the intersection of sets A ∩ B, and condi-
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Table 1: Information measure symbology

symbol usage commutative precedence

, conjugation yes high
: mutual yes :
| conditional no :
|| relative entropy no :
; divergence no low

tional ‘A|B’ to set complementA\B. For instance, the con-
ditional mutual information I(A,B : C | D) corresponds
to the region ((A ∪ B) ∩ C) \D.

Dissimilarity An information-theoretic divergence is a
measure of dissimilarity between a pair of ensembles that
is non-negative and zero if (and only if) the distributions
are identical. Since divergences are not symmetric to their
arguments in general, we can also define the dual diver-
gence d∗(A;B) = d(B;A). We’ll refer to a symmetric di-
vergence as a discrimination.1 By distancewemean ametric
distance: a measure that is non-negative; symmetric; zero
if (and only if) the distributions are identical (reflective);
and obeys the triangle inequality, d(A;B) + d(B;C) ⩾
d(A;C).

1 Entropy
Entropy (Shannon entropy, Gibbs entropy) A measure
of the inherent uncertainty or randomness of a single ran-
dom variable.

S(A) := −
∑
a

P(Aa) ln P(Aa) (2)

In information theory the entropy is typically denoted by
the symbol H, a notation that dates back to Boltzmann
and his H-theorem [3], and adopted by Shannon [12].
The notation S is due to Clausius and the original discov-
ery of entropy in thermodynamics [2], and adopted by
Gibbs [5] for use in statistical mechanics. I tend to use
S since I care about the physics of information, and the
symbol H is oft needed to denote the Hamiltonian.
The units of entropy depend on the base of the loga-

rithm: common choices are bits (”binary digits”), nats
(”natural units”), or bans, for bases 2, e, or 10 respectively.
Hereinwe’ll use natural logarithms. Note that, by conven-
tion, 0 ln 0 = 0.
Entropy is occasionally referred to as the self-

information, since entropy is equal to the mutual infor-
1The terms disparity, discrimination, and divergence are used essen-

tially interchangeably as synonymies of dissimilarity. The useful dis-
tinction that a discrimination is a symmetric divergence appears to be
novel, but consistent with practical usage in much of the literature.

mation between a distribution and itself, S(A) = I(A : A).
This is distinct from the specific entropy (62) which is
also sometimes referred to as the self-information.
Discrete entropies are non-negative and bounded.

0 ⩽ S(A) ⩽ ln |ΩA|

Joint entropy Given a joint probability distribution
P(A,B) then the joint entropy is

S(A,B) := −
∑
a,b

P(Aa,Bb) ln P(Aa,Bb) (3)

This joint entropy can be readily generalized to any num-
ber of variables.

S(A1,A2, . . . ,An)

= −
∑

a1,a2,...,an

P(A1
a1

,A2
a2

, . . . ,An
an

) ln P(A1
a1

,A2
a2

, . . . ,An
an

)

Marginal entropy The entropy of a marginal distribution.
Thus S(A), S(B), S(C), S(A,B), S(B,C) and S(A,C) are all
marginal entropies of the joint entropy S(A,B,C).

Conditional entropy (or equivocation) [12, 63] Mea-
sures how uncertain we are of A on the average when we
know B.

S(A | B) := −
∑
b

P(Bb)
∑
a

P(Aa | Bb) ln P(Aa | Bb) (4)

The conditional entropy is non-negative, since it is the ex-
pectation of non-negative entropies.

The chain rule for entropies [12, 63] expands conditional
entropy as a Shannon information measure.

S(A,B) = S(A | B) + S(B)

This follows from the probability chain rule,

P(Aa,Bb) = P(Bb | Aa)P(Aa) .

Subadditivity of entropy: Since entropies are always non-
negative if follows that conditioning always reduces en-
tropy, S(A | B) ⩽ S(A). This implies that entropy is sub-
additive: The joint entropy is less than the sum of the indi-
vidual entropies (with equality only if A and B are inde-
pendent).

S(A,B) ⩽ S(A) + S(B)

Bayes’ rule for probabilities is the relation P(Aa | Bb) =
P(Bb | Aa)P(Aa)/P(Bb). In entropic terms the equivalent
statement is (taking logarithms and averaging)

S(A | B) = S(B | A) + S(A) − S(B) .

3
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Table 2: Units of entropy

deciban 1
10 log2(10) ≈ 0.33 bits tenth of a ban

bit (shannon) 1 bit
nat (nit, nepit) log2(e) ≈ 1.44 bits natural digit
trit log2(3) ≈ 1.6 bits ternary digit
quad 2 bits
ban (hartly) log2(10) ≈ 3.32 bits decimal digit
nibble (nybble) 4 bits half a byte
byte 8 bits

Perplexity [35]

Perplexity(A) := eS(A) (5)

The exponentiation of the entropy (with the same base).
We can also define perplexities corresponding to other
entropic measures, such as the conditional perplexity
Perplexity(A | B) := eS(A|B). Partition functions in sta-
tistical mechanics are perplexities.

2 Mutual information
Mutual information (mutual entropy, transinforma-
tion)2 [12, 63]

I(A : B) :=
∑
a,b

P(Aa,Bb) ln P(Aa,Bb)

P(Aa)P(Bb)
(6)

A B

Mutual information is oft notated with a semicolon,
rather than a colon [12, 17].
Mutual information is the reduction in uncertainty of

A due to the knowledge of B, or vice versa.

I(A : B) = S(A) − S(A | B)

= S(B) − S(B | A)

= S(A) + S(B) − S(A,B)
= S(A,B) − S(A | B) − S(B | A)

Mutual information is non-negative.

0 ⩽ I(A : B)

2“I didn’t like the term Information Theory. Claude didn’t like it ei-
ther. You see, the term ‘information theory’ suggests that it is a theory
about information – but it’s not. It’s the transmission of information, not
information. Lots of people just didn’t understand this. . . I coined the
term ‘mutual information’ to avoid such nonsense: making the point
that information is always about something. It is information provided
by something, about something.” – Robert Fano [54]

A B

S(∅)

A B

S(A)

A B

S(B)

A B

S(A,B)

A B

I(A : B)

A B

S(A | B)

A B

S(B | A)

A B

residual

Figure 1: Two-variable Information diagrams [47, 72].
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This also implies that entropy is subadditive: The sum of
marginal entropy of two systems is less than, or equal to,
the joint entropy.

S(A) + S(B) ⩽ S(A,B)

Themutual information is zero if (and only if)A and B

are independent (written A ⊥⊥ B), such that P(Aa,Bb) =
P(Aa)P(Ba). And easy proof is to note that the mutual
information can be written as a relative entropy (16).
The mutual information of an ensemble with itself is

the entropy (which is why entropy is occasionally called
the self-information).

I(A : A) = S(A)

Multivariate mutual information (co-information) [17,
20, 21, 58, 61, 72]: A multivariate generalization of the
mutual information. Given a collection of probability en-
sembles, A = {A1,A2, · · · ,A|A|}, the multivariate mutual
information is equal to an alternating signed sum of all
the marginal entropies.

I(A1 : A2 : · · · : A|A|) (7)

:= −
∑

B∈P(A)

(−1)|B| S(B1,B2, . . . ,B|B|)

Here P(A) is the power set of A (the set of all subsets),
and |A| is the set cardinality. Note that there are con-
flicting sign conventions in the literature: the multivari-
ate mutual information is sometimes defined with oppo-
site sign for odd cardinalities (See interaction informa-
tion (9)).

The single variable case is equal to the entropy, I(A) =
S(A), the binary case is equal to the standard mutual in-
formation (7), and the ternary case is

I(A : B : C) (8)

:=
∑
a,b,c

P(Aa,Bb,Cc) ln P(Aa,Bb)P(Aa,Cc)P(Bb,Cc)

P(Aa,Bb,Cc)P(Aa)P(Bb)P(Cc)

For three or more variables the mutual information can
be positive, negative, or zero, whereas for one or two vari-
ables the mutual information is non-negative. For zero
variables the mutual information is zero, I(∅) = 0.

Themutual information defines a partitioning of the to-
tal, multivariate joint entropy into single variable, binary,

ternary, and higher order shared entropies.

S(A) = I(A)

S(A,B) = I(A) + I(B) − I(A : B)

S(A,B,C) = I(A) + I(B) + I(A)

− I(A : B) − I(B : C) − I(A : C)

+ I(A : B : C)

Or generally,

S(A1,A2, . . . ,A|A|) = −
∑

B∈P(A)

(−1)|B|I(B1 : · · · : B|B|) .

The triplet interaction information is the information
that a pair of variable provides about the third, compared
to the information that each provides separately [17, 20,
60].

I(A : B : C) = I(A : B) + I(A : C) − I(A : B,C)

The multivariate self-information is equal the entropy
for any cardinality.

I(A : A : A : · · · : A) = S(A)

Interaction information (synergy, mutual informa-
tion) [17]: An alternative sign convention for multivari-
ate mutual information. The interaction information is
equal in magnitude to the multivariate information, but
has the opposite sign for odd number of ensembles.

Int(A1 : A2 : · · · : An) := (−1)nI(A1 : A2 : · · · : An) (9)

The sign convention used above for multivariate informa-
tion generally makes more sense.

Conditional mutual information [21] The average mu-
tual information between A and B given C.

I(A : B | C) (10)

:=
∑
c

P(Cc)
∑
a,b

P(Aa,Bb | Cc) ln P(Aa,Bb | Cc)

P(Aa | Cc)P(Bb | Cc)

A B

C

I(A : B | C)

A B

C

I(A : C | B)

A B

C

I(B : C | A)

I(A : B | C) = S(A | C) − S(A | B,C)
= S(B | C) − S(B | A,C)

5
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A B

C

I(A : B | C)

A B

C

I(A : B : C)

A B

C

I(A : B,C)

A B

C

binding

A B

C

residual

Figure 2: Three-variable information diagrams [47, 72].
Note that the central region I(A : B : C) can be positive
or negative (these are not Venn diagrams) and that we
shade regions in proportion to their multiplicity, e.g. total
correlation.

Strong subadditivity: The conditional mutual informa-
tion is non-negative. If the conditional mutual informa-
tion I(A : B | C) is zero, then A and B are conditionally in-
dependent givenC (writtenA ⊥⊥ B | C). Conversely condi-
tional independence implies that the conditional mutual
information is zero.

A ⊥⊥ B | C ⇐⇒ I(A : B | C) = 0

Conditional independence implies that P(Aa,Bb | Cc) =
P(Aa | Cc) P(Ba | Cc)for all a,b, c.
The chain rule for mutual information is

I(A : B,C) = I(A : C) + I(A : B | C)

A B

C

=

A B

C

+

A B

C

The data processing inequality states that if A and C

are conditionally independent, givenB (as happenswhen
you have a Markov chain A → B → C) then

I(A : B) ⩾ I(A : C) given I(A : C | B) = 0

Proof: I(A : B) − I(A : C) = I(A : B | C) − I(A : C | B), but
I(A : C | B) is zero, and I(A : B | C) is positive.

A B

C

−

A B

C

=

A B

C

−

A B

C

Binding information (Dual total correlation) [36, 72, 75]

Binding(A) := S(A) −
∑
A∈A

S(A | A \A) (11)

Here A \A is the set compliment of A.

Binding(A : B) = I(A : B)

Binding(A : B : C) = I(A,B : A,C : B,C)
Binding(A : B : C : D) = I(A,B,C : A,B,D : A,C,D : B,C,D)

Residual entropy (erasure entropy, independent infor-
mation, variation of information, shared information dis-

6
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tance) [33, 44, 69, 72]

Residual(A) :=
∑
A∈A

S(A | A \A) (12)

= S(A) − Binding(A)

Measures the total amount of randomness localized to in-
dividual variables.

We can express the residual entropy as a Shannon in-
formation measure if we extend the notation to allow
colons ’:’ in conditionals (i.e. on right side of a bar ’|’) [1],
e.g.

Residual(A : B : C) = I(A,B,C | A,B : A,C : B,C)

Total correlation (Multi-information, multivariate con-
straint, redundancy, integration) [17, 20, 37, 58]

TotalCorr(A1,A2, . . . ,An) := (13)
S(A1) + S(A2) + · · · + S(An) − S(A1,A2, . . . ,An)

The total amount of information carried by correlations
between the variables. Quantifies the total correlation or
redundancy. Equal to the mutual information when n =
2. The independence bound on entropy states that the
total correlation is non-negative.

Lautum information [68] :

Lautum(A;B) :=
∑
a,b

P(Aa)P(Bb) ln P(Aa)P(Bb)

P(Aa,Bb)
(14)

Much like the mutual information, but with the roles of
joint and marginal product distributions swapped. (Lau-
tum is mutual spelled backwards).

Uncertainty coefficient (relative mutual informa-
tion) [67] 3

UncertaintyCoeff(A;B) := I(A : B)

S(A)
= 1 −

S(A | B)

S(A)
(15)

3Despite misinformation to the contrary, this uncertainty coefficient
is not related to Theil’s U-statistic

Given B, the fraction of the information we can predict
about A.

3 Relative entropy

Relative entropy (Kullback-Leibler divergence4, KL-
divergence, KL-distance, Kullback information, infor-
mation gain, logarithmic divergence, information diver-
gence) [14, 63]5

D(A ∥ B) :=
∑
x

P(Ax) ln P(Ax)

P(Bx)
(16)

Roughly speaking, the relative entropy measures the dif-
ference between two distributions, although it is not a
metric since it is not symmetric [D(A ∥ B) ̸= D(B ∥ A) in
general], nor does it obey the triangle inequality. Note
that the two distributions must have the same sample
space, and that we take as convention that 0 ln 0 = 0.
One interpretation of relative entropy is that it repre-

sents an encoding cost [63]: if we encode messages us-
ing an optimal code for a probability distribution P(Bx) of
messages x, but the messages actually arrive with proba-
bilities P(Ax), then each message requires, on average, an
additionalD(A ∥ B) nats to encode compared to the opti-
mal encoding.
The mutual information (6) is the relative entropy be-

tween the joint and marginal product distributions. Let
the random variables (Â, B̂) be independent, but with the
same marginals as (A,B), i.e. P(Â, B̂) = P(A)P(B). Then

I(A : B) = D(A,B ∥ Â, B̂)

Similarly, for three or more variables, the relative en-
tropy between the joint and marginal product distribu-
tions is the total correlation (13).

TotalCorr(A1,A2, . . . ,An)

= D(A1,A2, . . . ,An ∥ Â1, Â2, . . . , Ân)

The Lautum information (14) is

Lautum(A : B) = D(Â, B̂ ∥ A,B)

4“Kullback-Leibler divergence” is probably the most common termi-
nology, which is often denoted DKL and verbalized as “dee-kay-ell”.
I’ve chosen to use the more descriptive “relative entropy” partially so
that we can more easily talk about the generalization of relative entropy
to other relative Shannon measures.

5Note that our notation for relative entropy is uncommon. Follow-
ing [63], many authors instead directly supply the distributions as ar-
guments, e.g. D(p(x)∥q(x)).
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A
B C

D

S(∅)

S(A | B,C,D) S(B | A,C,D) S(C | A,B,D) S(D | A,B,C)

I(A : B | C,D) I(A : C | B,D) I(A : D | B,C) I(B : C | A,D) I(B : D | A,C) I(C : D | A,B)

I(A : B : C | D) I(A : B : D | C) I(B : C : D | A) I(A : C : D | B)

I(A : B : C : D)

Figure 3: Components of four-variable information diagrams.
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A
B C

D

S(∅)

S(A) S(B) S(C) S(D)

I(A : B) I(A : C) I(A : D) I(B : C) I(B : D) I(C : D)

I(A : B : C) I(A : B : D) I(A : C : D) I(B : C : D)

I(A : B : C : D)

Figure 4: Information diagrams for four-variable mutual-information.
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Cross entropy (inaccuracy) [18, 22]:

CrossEnt(A;B) := −
∑
x

P(Ax) ln P(Bx) (17)

= S(A) +D(A ∥ B)

The cross entropy measures the average number of bits
needed to identify events that occur with probability
P(Ax), if a coding scheme is used that is optimal for the
probability distribution P(Bx).

Burg entropy [32]:

Burg(B) :=
∑
x

ln P(Bx) (18)

Proportional to the cross entropy with a uniform source
distribution.

Relative joint entropy

D
(
A,B ∥ A ′,B ′) := ∑

x,y
P(Ax,By) ln P(Ax,By)

P(A ′
x,B ′

y)
(19)

We can generalize any Shannon information measure to a
relative Shannon information measure by combining appro-
priate linear combinations of relative joint entropies6.

Monotonicity of relative entropy: The relative joint en-
tropy is always greater or equal to the marginal relative
entropy.

D
(
A,B ∥ A ′,B ′) ⩾ D

(
B ∥ B ′)

This follows because the relative conditional entropy
D(A|B ∥ A ′|B ′) = D(A,B ∥ A ′,B ′) − D(B ∥ B ′) is non-
negative.

Relative conditional entropy (conditional relative en-
tropy, conditional Kullback-Leibler divergence) [63]

D
(
A | B ∥ A ′ | B ′) := ∑

x,y
P(Ax,By) ln P(Ax | By)

P(A ′
x | B ′

y)
(20)

The relative conditional entropy is non-negative (Proof
via log-sum inequality).

The chain rule for relative entropy is

D(A,B ∥ A ′,B ′) = D
(
A | B ∥ A ′ | B ′)+D(B ∥ B ′)

6One reason for extending the standard notations to this larger class
of relative Shannon information measures is that such measures turn
up naturally, for instance when consider the non-equilibrium thermo-
dynamics of strongly coupled systems [77, 78]

Relative mutual information [1]

D(A : B ∥ A ′ : B ′) (21)

:=
∑
x,y

P(Ax,By) ln P(Ax,By)

P(A ′
x,B ′

y)

P(A ′
x)P(B

′
y)

P(Ax)P(By)

The relative joint entropy can be split up into various com-
ponents analogously to the joint entropy.

D(A,B ∥ A ′,B ′)

:= D(A ∥ A ′) +D(B ∥ B ′) +D(A : B ∥ A ′ : B ′)

= D
(
A | B

∥∥ A ′ | B ′)+D(B ∥ B ′)

= D
(
A | B

∥∥ A ′ | B ′)+D
(
B | A

∥∥ B ′ | A ′)
−D(A : B ∥ A ′ : B ′)

If the reference distributions are independent, the rel-
ative mutual information is equal to the mutual informa-
tion between the principle distributions.

D(A : B ∥ A ′ : B ′) = I(A : B) if A ⊥⊥ B

Note that the uncertainly coefficient (15) is also some-
times called the relative mutual information.

Relative conditional mutual information [1]

D(A : B | C ∥ A ′ : B ′ | C ′) (22)

:=
∑
z

P(Cz)
∑
x,y

P(Ax,By | Cz)

× ln P(Ax,By | Cz)

P(A ′
x,B ′

y | C ′
z)

P(A ′
x | C ′

z)P(B
′
y | C ′

z)

P(Ax | Cz)P(By | Cz)

We could continue this insanity by generalizing the con-
ditional mutual relative entropy to many variables.

Relative relative entropy [1]

D
(
(A ∥ B)

∥∥(C ∥ D)
)
:=

∑
x

P(Ax) ln P(Ax)

P(Bx)

P(Dx)

P(Cx)
(23)

The relative operation can be applied to relative entropy
itself, leading to the recursively defined relative relative
entropy. As an example, the relative mutual information
can also be expressed as a relative relative entropy (Just
as the mutual information can be expressed as a relative
entropy).

D(A : B ∥ A ′ : B ′) = D
(
(A,B ∥ Â, B̂)

∥∥(A ′,B ′ ∥ Â ′, B̂ ′)
)

Jeffreys entropy The Jeffreys entropy (Jeffreys diver-
gence, J-divergence or symmetrized Kullback-Leibler di-
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vergence) [10, 14] is a symmetrized relative entropy (16).

Jeffreys(A;B) := D(A ∥ B) +D(A ∥ B) (24)

=
∑
x

P(Ax) ln P(Ax)

P(Bx)
+
∑
x

P(Bx) ln P(Bx)

P(Ax)

= 1
2

∑
x

(
P(Ax) − P(Bx)

)
ln P(Ax)

P(Bx)

This measure is symmetric and non-negative, but not
a metric since it does not obey the triangle inequality.
The Jeffreys entropy is a symmetric f-divergence (35),
Cf(A;B)with f(t) = (t− 1) ln t.

Note that Jeffreys entropy is sometimes defined to be
half the value as originally defined by Jeffreys.

Jensen-Shannon divergence (Jensen-Shannon entropy,
Jensen difference, information radius, capacitory discrim-
ination7) is the mean relative entropy between two distri-
butions and the distribution mean [46, 53]

JS(A;B) := 1
2

∑
x

P(Ax) ln P(Ax)

1
2

(
P(Ax) + P(Bx)

) (25)

+ 1
2

∑
x

P(Bx) ln P(Bx)

1
2

(
P(Ax) + P(Bx)

)
= 1

2D
(
A ∥ M

)
+ 1

2D
(
B ∥ M

)
,

=S(M) − 1
2S(A) − 1

2S(B) .

where

P(Mx) =
1
2P(Ax) +

1
2P(Bx)

One interpretation of the Jensen-Shannon entropy is
in terms of a Bayesian inference problem [59]: given a
sample taken from one of two probability distributions,
the Jensen-Shannon entropy is the average information
the sample provides about the identity of the distribution.
The divergence is equal to zero only if the two distribu-
tions are identical, and therefore indistinguishable, and
reaches its maximum value of ln 2 nats (i.e. 1 bit) if the
two distributions do not overlap and therefore are per-
fectly distinguishable from a single sample.

The Jeffreys and Jensen-Shannon entropies are related
by the inequalities [46]

0 ⩽ JS(A;B) ⩽ Jeffreys(A;B) .

General Jensen-Shannon divergence (skewed Jensen-
Shannon divergence)

JSα(A;B) :=(1 − α)D
(
A ∥ M

)
+ αD

(
B ∥ M

)
, (26)

P(M) = (1 − α)P(A) + αP(B) .

7Capacitory discrimination is defined as twice the Jensen-Shannon
divergence by Topsøe [53]

JS0(A;B) = D(A ∥ B)

JS 1
2
(A;B) = JS(A;B)

JS1(A;B) = D(B ∥ A)

Jensen-Shannon entropy (generalized Jensen-Shannon
divergence) [30, 59]

JSΘ(A
1;A2; · · · ;An) :=

∑
α=1,n

P(Θα) D
(
Aα ∥ M

)
, (27)

P(Mx) =
∑
α

P(Θα) P(A
α
x ) .

The entropy of a mixed distribution is the average en-
tropy of the components plus the Jensen-Shannon en-
tropy [53] :

S(M) = JSΘ(A
1;A2; · · · ;An) +

∑
α

P(Θα) S(A
α)

The multivariate Jensen-Shannon entropy is the mu-
tual information between themixing ensembleΘ, and the
mixed ensemble M.

I(Θ : M) :=
∑
α,x

P(Θα,Mx) ln P(Θα,Mx)

P(Θα)P(Mx)

= −
∑
x

P(Mx) ln P(Mx)

+
∑
α,x

P(Θα)P(Mx | Θα) ln P(MX | Θα)

= S(M) −
∑
α

P(Θα) S(A
α)

= JSΘ(A
1;A2; · · · ;An)

Resistor-average entropy [56]:

ResAvg(A;B) := 1
1

D(A ∥ B) +
1

D(B ∥ A)

(28)

The harmonic mean of forward and reversed relative en-
tropies.

4 Rényi information
Rényi information (Rényi entropy, alpha-order en-
tropy) [19]: A one parameter generalization of the Shan-
non entropy.

Renyiα(A) :=
1

1 − α
ln

∑
x

P(Ax)
α (29)

Interesting special cases of the Rényi information in-
clude the Hartley entropy (α = 0), collision entropy

11
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(α = 2), Shannon entropy (α = 1), and min entropy
(α = ∞). See also: Rényi divergence (47).

Renyiα(A) ⩾ Renyiβ(A) , β ⩾ α

Collision entropy (Rényi quadratic entropy, Rényi infor-
mation of order 2, second order entropy) [48]

CollisionEntropy(A) := − ln
∑
x

P(Ax)
2 (30)

= Renyi2(A)

A special case of the Rényi information. The negative log
(62) probability that two independent samples from the
distribution are the same.

Min-entropy [19]

MinEntropy(A) := − ln max
x

P(Ax) (31)

Hartley entropy (Hartley function, max-entropy, Boltz-
mann entropy) [7]: The logarithm of the number distinct
possibilities.

Hartley(A) := ln |ΩA| (32)

The maximum entropy for a given cardinality. Coincides
with the entropy for a uniform distributions.

Tsallis information [29, 31, 41] (Havrda-Charvát infor-
mation, α order information)

Tsallisα(A) :=
1

α− 1
(
1 −

∑
x

P(Ax)
α
)

(33)

=
1

α− 1
[
e(α−1)Renyiα(A) − 1

]
Sharma-Mittal information [34, 76]

SharmaMittalα,β(A) :=
1

β− 1

1 −

(∑
x

P(Ax)
α

) 1−β
1−α


(34)

Assuming suitable limits are taken, the Sharma-Mittal
information contains Shannon, Rényi and Tsallis informa-
tions as special cases.

SharmaMittal1,1(A) = S(A)

SharmaMittalα,1(A) = Renyiα(A)

SharmaMittalα,α(A) = Tsallisα(A)

5 Csiszár f-divergences

Csiszár f-divergence Many interesting divergence mea-
sures between probability distributions can be written as
(or related to) an f-divergence (also know as Csiszár8,
Csiszár-Morimoto, Ali-Silvey, or ϕ-divergence) [27, 28,
26, 62, 70, 56].

Cf(A;B) =
∑
x

P(Ax) f
( P(Bx)

P(Ax)

)
, (35)

where the function f is convex ⌣ and f(1) = 0. This
implies Cf(A;B) ⩾ 0 from an application of Jensen’s in-
equality. Examples already encountered include the rela-
tive, Jeffreys, and Jensen-Shannon entropies (see table 3).
Note that the first argument to the f-divergence appears
in the numerator of the ratio and is the distribution to be
averaged over. The opposite convention also occurs9.
Convex functions are closed under conical combina-

tions: the function f(x) = c1f1(x)+c2f2(x)+. . .+ cNfN(x)
is convex if each function of the mixture fn is convex
and each constant cn ⩾ 0 is non-negative. It follows
that a positive linear sum of an f-divergences is also an
f-divergence [74].

Dual f-divergence [74] The dual of an f divergence is de-
fined by swapping the arguments.

Cf(A;B) = C∗
f(B;A) = Cf∗(B;A) (36)

Here f∗ is the Csiszár dual [74] of a function f∗(x) =
x f(1/x). For instance, if f(x) = − ln(x) then the f diver-
gence is the relative entropy Cf(A;B) = D(A ∥ B), with
dual function f∗(x) = x ln(x), and dual divergence the
dual (or reverse) relative entropy, Cf∗(A;B) = D(B ∥ A).

Symmetric f-divergences [0] Many instances of the f-
divergence are symmetric under interchange of the two
distributions,

Cf(A;B) = Cf(B;A) .

This implies that f(x) = x f( 1
x
).

There are two common methods for symmetrizing
an asymmetric f-divergence: the Jeffreys symmetrization
where we average over interchanged distributions

Cf(A;B) = 1
2Cg(A;B) + 1

2Cg(B;A)

f(t) = 1
2g(t) +

1
2tg(t

−1)

and the Jensen symmetrization where we take the average
divergence of both distributions to the average distribu-

8Pronounced che-sar.
9I, myself, have used the opposite convention on other occasions, but,

on reflection, this way around makes more sense.
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Table 3: Csiszár f-divergences (§5)

Asymmetric f-divergences f(t) f∗(t)

(16) relative entropy − ln t t ln t

(37) K-divergence ln 2
(1 + t)

t ln 2t
(1 + t)

(40) Pearson divergence (t− 1)2 ( 1√
t
−
√
t)2

(49) Cressie-Read divergence t−α − 1
α(α+ 1)

(50) Tsallis divergence t1−α − 1
α− 1

Jeffreys Jensen

Symmetric f-divergences f(t) h(t) g(t)

(42) LeCam discrimination (t− 1)2

(t+ 1)
(t− 1)2

(24) Jeffreys entropy (t− 1) ln t − ln t

(25) Jensen-Shannon entropy 1
2 ln 2

1 + t
+ 1

2t ln 2t
1 + t

ln 2
1+t

− ln t

(54) variational distance 1
2 |t− 1| · · ·

(39) Hellinger discrimination 1 −
√
t · · ·

13
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tion.

Cf(A;B) = 1
2Ch

(
A;M

)
+ 1

2Ch

(
B;M

)
P(Mx) =

1
2P(Ax) +

1
2P(Bx)

f(t) = 1
2h

(
1

1 + 1
2t

)
+ 1

2h

(
1

1 + 1
2t

−1

)
We include the half’s in these definitions so that sym-
metrized f-divergences are invariant under symmetriza-
tion. We call these the Jeffreys and Jensen symmetrizations
respectively [1], becuase a Jeffreys symmetrization of the
relative entropy (16) is half the Jeffreys entropy (24), and
a Jensen symmetrization gives the Jensen-Shannon en-
tropy (25).

K-divergence [46]

KayDiv(A;B) :=
∑
x

P(Ax) ln P(Ax)

1
2

(
P(Ax) + P(Bx)

) (37)

= D
(
A ∥ M

)
, P(Mx) =

1
2P(Ax) +

1
2P(Bx)

= Cf(A;B), f(t) = ln 2
(1 + t)

.

Of interest since the K-divergence is a lower bound to the
relative entropy [46],

KayDiv(A;B) ⩽ 1
2D(A ∥ B)

and the Jeffreys symmetrization of the K-divergence is the
Jensen-Shannon entropy.

JS(A;B) = 1
2 KayDiv(A;B) + 1

2 KayDiv(B;A)

= 1
2D
(
A ∥ M

)
+ 1

2D
(
B ∥ M

)

Fidelity (Bhattacharyya coefficient, Hellinger affin-
ity) [9] The Bhattacharyya distance (60) and the
Hellinger divergence and distance (39) are functions
of fidelity. The name derives from usage in quantum
information theory [49].

Fidelity(A;B) :=
∑
x

√
P(Ax)P(Bx) (38)

The range is [0, 1], with unity only if the two distributions
are identical. Fidelity is not itself an f-divergence (The re-
quired function f(t) =

√
t isn’t convex), but is directly re-

lated to the Hellinger divergence (39) and Bhattacharyya
distance (60).

Hellinger discrimination (Squared Hellinger distance,
infidelity) [11]

HellingerDiv(A;B) := 1
2

∑
x

(√
P(Ax) −

√
P(Bx)

)2 (39)

=
∑
x

P(Ax)
(
1 −

√
P(Bx)

P(Ax)

)
= Cf(A;B), f(t) = (1 −

√
t)

= 1 −
∑
x

√
P(Ax)P(Bx)

= 1 − Fidelity(A;B)

Symmetric, with range [0, 1]. A common alternative nor-
malization omits the one-half prefactor. The name origi-
nates form that of the corresponding integral in the con-
tinuous case [6].

Pearson divergence (χ2-divergence, chi square diver-
gence, Pearson chi square divergence, Kagan divergence,
quadratic divergence, least squares) [4]

Pearson(A;B) :=
∑
x

(
P(Bx) − P(Ax)

)2

P(Bx)
(40)

=
∑
x

P(Ax)
( P(Bx)

P(Ax)
− 1
)2

= Cf(A;B) , f(t) = (t− 1)2

Neyman divergence (inverse Pearson chi square diver-
gence) [13, 39]

Neyman(A;B) := Pearson(B;A) (41)

The dual of the Pearson divergence (arguments
switched).

LeCam discrimination (LeCam discrimination, Vincze-
LeCamdivergence, triangular discrimination) [38, 40, 53]

LeCam(A;B) :=
∑
x

(
P(Ax) − P(Bx)

)2

P(Ax) + P(Bx)
(42)

= 2Cf(A;B), f(t) =
(t− 1)2

2(t+ 1)
.

The LeCam discrimination is a Jensen symmetrized Pear-
son divergence.

LeCam(A;B) := 1
2 Pearson

(
A;M

)
+ 1

2 Pearson
(
B;M

)
P(Mx) =

1
2P(Ax) +

1
2P(Bx)

The triangular discrimination is defined as twice the
LeCam discrimination [0].
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Skewed K-divergence [46]

KayDivα(A;B) :=
∑
x

P(Ax) ln P(Ax)

(1 − α)P(Ax) + αP(Bx)

(43)
= D

(
A ∥ M

)
,

P(M) = (1 − α)P(A) + αP(B)

Alpha-Jensen-Shannon-entropy [46, 71]

AlphaJSα(A;B) := 1
2 KayDivα(A;B) + 1

2 KayDivα(B;A)

(44)
AlphaJS0(A;B) = 0
AlphaJS 1

2
(A;B) = JS(A;B)

AlphaJS1(A;B) = Jeffreys(A;B)

The Jeffreys symmetrization of the skewed K-divergence.

6 Chernoff divergence
Chernoff divergence The Chernoff divergence [15, 51] of
order α is defined as

Chernoffα(A;B) := − ln
∑
x

P(Ax)

(
P(Ax)

P(Bx)

)α−1
(45)

= − ln
[
Cf(A;B) + 1

]
, f(t) = t1−α − 1 .

The Chernoff divergence is zero for α = 1 and α = 0, and
reaches a maximum, the Chernoff information [15, 63],
for some intermediate value of alpha. The Chernoff di-
vergence is well defined for α > 1 if P(Bx) > 0 when-
ever P(Ax) > 0, and for α < 0 if P(Ax) > 0 whenever
P(Bx) > 0, and thus defined for all α if the distributions
have the same support.

The Chernoff divergence of order α is related to the
Chernoff divergence of order 1−αwith the distributions
interchanged [51],

Chernoffα(A;B) = Chernoff1−α(B;A) .

This relation always holds forα ∈ [0, 1], and for allαwhen
the distributions have the same support.

Chernoff coefficient (alpha divergence) [15, 51, 52]

ChernoffCoefficientα(A;B) :=
∑
x

P(Ax)

(
P(Ax)

P(Bx)

)α−1

(46)
= exp

(
−Chernoffα(A;B)

)
= Cf(A;B) + 1, f(t) = t1−α − 1

The exponential twist density [42] is way ofmixing two

distributions [55] to form a third

P(Cx) =
1
Zα

P(Ax)
αP(Bx)

1−α

Here α is a mixing parameter between 0 and 1. The nor-
malization constant Zα is the Chernoff coefficient, Zα =
ChernoffCoefficientα(A;B) [79].

Rényi divergence The Rényi divergence (or relative
Rényi entropy) of order α is a one-parameter generaliza-
tion of the relative entropy [19],

Renyiα(A;B) := 1
α− 1

ln
∑
x

P(Ax)

(
P(Ax)

P(Bx)

)α−1
(47)

=
1

1 − α
Chernoffα(A;B)

=
1

α− 1
ln
[
Cf(A;B) + 1

]
, f(t) = t1−α − 1 .

Higher values of α give a Rényi divergence dominated by
the greatest ratio between the two distributions, whereas
as α approaches zero the Rényi entropy weighs all pos-
sibilities more equally, regardless of their dissimilarities.
We recover the relative entropy in the limit of α → 1.

Interesting special cases of the Rényi divergence occur
for α = 0, 1

2 , 1 and ∞. As previously mentioned, α = 1
gives the relative entropy (16), and α = 1

2 gives the Bhat-
tacharyya distance (60). In the limit α → 0, the Rényi
divergence slides to the negative log probability under q
that p is non-zero,

lim
α→0

Renyiα(A;B) = − ln
∑
x

lim
α→0

P(Ax)
αP(Bx)

1−α

= − ln
∑
x

P(Bx)[P(Ax) > 0] .

Here we have used the Iverson bracket, [a], which evalu-
ates to 1 if the condition inside the bracket is true, and 0
otherwise. If the two distributions have the same support
then in the α → 0 Rényi divergence is zero.

Alpha-divergence [0, 0] In the most widespread param-
eterization,

Dα(A;B) := 1
α(1 − α)

(
1 −

∑
x

P(Ax)
α P(Bx)

1−α

)
(48)

The alpha-divergence is self-dual,

Dα(A;B) = D1−α(B;A)

Special cases include the Neyman and Pearson diver-
gences, the Hellinger discrimination, and the relative en-

15



On Measures of Entropy and Information, G. E. Crooks (2015-2024)

tropy.

Dα(A;B) =



Pearson(A;B) α = −1
D(B ∥ A) limα→0

4 HellingerDiv(A;B) α = + 1
2

D(A ∥ B) limα→+1

Neyman(A;B) α = +2

Another common paramaterization is [0, 0]

Dα′(A;B) := 4
1 − α ′2

(
1 −

∑
x

P(Ax)
1−α′

2 P(Bx)
1+α′

2

)

where α ′ = 1 − 2α. This paramaterization has the advan-
tage that the duality corresponds to negating the param-
eter.

D+α′(A;B) = D−α′(B;A)

Cressie-Read divergence [39]

CressieReadα(A;B) := 1
α(α+ 1)

∑
x

P(Ax)

[(
P(Ax)

P(Bx)

)α

− 1
]

(49)

=
1

α(α+ 1)
[
eαRenyiα+1(A;B) − 1

]
=

1
α+ 1

Tsallisα+1(A;B)

= Cf(A;B), f(t) =
t−α − 1
α(α+ 1)

.

Tsallis divergence (relative Tsallis entropy) [50] Other
closely related divergences include the relative Tsallis en-
tropy,

Tsallisα(A;B) := 1
α− 1

∑
x

P(Ax)

[(
P(Ax)

P(Bx)

)α−1
− 1

]
(50)

=
1

α− 1
[
e(α−1)Renyiα(A;B) − 1

]
= Cf(A;B), f(t) = t1−α−1

α−1 ,

Sharma-Mittal divergence [34, 76]

SharmaMittalα,β(A;B) (51)

:=
1

β− 1

1 −

(∑
x

P(Ax)
αP(Bx)

1−α

) 1−β
1−α


=

1
1 − β

(
1 − ChernoffCoefficientα(A;B)

1−β
1−α

)
α > 0, α ̸= 0, β ̸= 0

The Sharma-Mittal divergence encompasses Cressie-
Read divergence (β = 1 − α(α + 1)), Rényi divergence
(β → 1), Tsallis divergence (β → 0), and the relative en-
tropy (β,α → 1).

7 Cauchy-Schwarz divergence
Cauchy-Schwarz divergence [64, 73, 76]

CauchySchwarz(A;B) := (52)

− ln
∑

x P(Ax)P(Bx)√(∑
x P(Ax)2

)(∑
x P(Bx)2

)
This divergence is symmetric, and takes advantage of

the Cauchy-Schwarz inequality to ensure that the diver-
gence is non-negative, being zero only for identical distri-
butions.

Cauchy-Schwarz angle [1]

CauchySchwarzAngle(A;B) := (53)

arccos
∑

x P(Ax)P(Bx)√(∑
x P(Ax)2

)(∑
x P(Bx)2

)
By similar reasoning we can define an angle between dis-
tributions. This is a metric.

8 Distances
Variational distance (L1 distance, variational divergence,
Kolmogorov distance) [0, 0]

V(A;B) = L1(A;B) := 1
2

∑
x

∣∣P(Bx) − P(Ax)
∣∣ (54)

= Cf(A;B), f(t) =
∣∣t− 1

∣∣
The only f-divergence (35) which is also a metric [66].

Pinsker’s inequality:

D(A ∥ B) ⩾ 1
2 V(A;B)2

Total variational distance [0] The largest possible differ-
ence between the probabilities that the two distributions
can assign to the same event. Equal to twice the Varia-
tional distance

Euclidian distance (L2 distance)

L2(A;B) :=
√∑

x

∣∣P(Bx) − P(Ax)
∣∣2 (55)
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It is sometimes useful to treat a probability distribution
as a vector in a Euclidean vector space, and therefore con-
sider Euclidean distances between probability distribu-
tions.

Minkowski distance

Lp(A;B) :=

(∑
x

∣∣P(Bx) − P(Ax)
∣∣p) 1

p

(56)

A metric distance provided that p ⩾ 1.

Chebyshev distance

L∞(A;B) := max
∣∣P(Bx) − P(Ax)

∣∣ (57)

LeCam distance The square root of the LeCam discrimi-
nation (42) [45].

LeCamDist(A;B) :=
√

1
2 LeCam(A;B) (58)

Hellinger distance The square root of theHellinger diver-
gence.

Hellinger(A;B) :=
√

HellingerDiv(A;B) (59)

Jensen-Shannon distance is the square root of the Jensen-
Shannon divergence, and is a metric between probability
distributions [59, 57].

Bhattacharyya distance [8] The Chernoff divergence of
orderα = 1

2 . The negative logarithmof the Bhattacharyya
coefficient (fidelity).

Bhattacharyya(A;B) := − ln
∑
x

√
P(Ax)P(Bx) (60)

= Chernoff 1
2
(A;B)

= − ln Fidelity(A;B) .

Bhattacharyya angle (statistical angle) [0] The inverse co-
sine of the Bhattacharyya coefficient (fidelity).

Bhattacharyya(A;B) := arccos
∑
x

√
P(Ax)P(Bx) (61)

= arccos Fidelity(A;B) .

9 Specific information
A specific (or point-wise, or local) entropy is the entropy
associated with a single event, as opposed to the average
entropy over the entire ensemble [21].

A common convention is to use lower cased function
names for specific information measures; s for S, i for I.
However, since the expectation of a single proposition is
equal to the value associated with the event, we can also
write S(Ax) := s(Ax), and I(Ax : By) := i(Ax : By).
With this notation we can express point-wise measures
corresponding to all the ensemble measures defined pre-
viously, without having to create a host of new notation.
We can also write multivariate specific informations aver-
aged over only one ensemble, not both, e.g. I(A : Bx) [18].

Specific entropy (information content, self-information,
score, surprise, surprisal) [16, 24] is the negative loga-
rithm of a probability.

s(Ax) := − ln P(Ax) (62)

The expectation of the specific entropy is the Shannon en-
tropy, the average point-wise entropy of the ensemble (2).

S(A) = E
[
s(A)

]
=

∑
x

P(Ax) s(Ax)

Local conditional entropy [0]

S(A | Bb) := −
∑
a

P(Aa | Bb) ln P(Aa | Bb) (63)

= EA [− ln P(A | B)] (64)

The entropy of A conditioned on a particular proposition
from ensemble B. A partially localized specific informa-
tion.

Specific mutual information (point-wise mutual infor-
mation, local mutual information) [18, 21, 43]

i(Ax : By) := ln P(Ax,By)

P(Ax)P(By)
(65)

Similarly, the expectation of the specific mutual informa-
tion is the mutual information of the ensemble (6).

I(A : B) = E
[

i(A : B)
]
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Wärmegleichgewicht unter Gasmolekülen (Further
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