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ABSTRACT

Correlations between protein structures and amino acid se-
quences are widely used for protein structure prediction. For
example, secondary structure predictors generally use cor-
relations between a secondary structure sequence and corre-
sponding primary structure sequence, whereas threading al-
gorithms, and similar tertiary structure predictors, typically
incorporate interresidue contact potentials. To investigate
the relative importance of these interactions we measured
the mutual information between the primary structure, sec-
ondary structure and side-chain surface exposure, both for
adjacent residues along the amino acid sequence, and for
tertiary structure contacts between residues distantly sepa-
rated along the backbone. We find that local interactions
along the amino acid chain are far more important than
non-local contacts, and that correlations between proximate
amino acids are essentially uninformative. This suggests
that knowledge-based contact potentials may be less impor-
tant for structure predication than is generally believed.

INTRODUCTION

The three-dimensional structure of a protein is determined
by the protein’s amino acid sequence via the process of
protein folding. Conversely, the amino acid sequence is
selected by evolution to fold into the required structure.
At present, we are incapable of elucidating this protein

sequence-structure mapping in detail. However, many
coarse-grained structural features are directly correlated
with the amino acid sequence. For example, hydrophobic
valines tend to be buried in the protein core, alanines are
over-represented in helixes, and cysteines are often located
close in space so that they may form disulphide bonds.

Correlations between sequence and many different simpli-
fied structural features, such as burial, secondary structure
and inter-residue proximity, have been extensively studied
and used in a wide range of protein structure prediction al-
gorithms and protein folding studies. Among these are sec-
ondary structure prediction1,2, disorder prediction3,4, vari-
ous tertiary prediction methods5, such as structure profiles
6,7 and threading8,9,10, and simplified models of protein fold-
ing11,12,13. Unfortunately, it is often difficult to determine
the relative importance of different interactions to the re-
ported algorithmic performance. The selection and defini-
tion of potentials varies greatly, and the choices made are not
always carefully cross-validated. Indeed, many of the more
sophisticated methodologies are computationally expensive,
rendering a detailed study or comprehensive comparison14

problematic. Often-times the actual interactions are hidden
beneath a neural network or other training layer, and very
frequently structure-sequence interactions are intermingled
with homology information, masking the relative effect of
structure versus evolutionary history on the amino acid se-
quence.

The direct, quantitative measurements of sequence-
structure correlations can elucidate the relative importance
of different interactions to protein structure15, and facilitate
the rational design of structure prediction algorithms. For
example, the frequency with which a particular amino acid
is located in the center of proteins is directly related to the
hydrophobicity of the amino acid side chain16,17. Recently,
Cline et al.18 investigated the strength of correlations be-
tween residues close in space but distant along the chain,
and found them to be surprisingly weak. These correlations
are the essential interaction encoded by contact potentials,
which are commonly used by protein threading and allied
structure prediction algorithms, and also in many idealized
models of protein folding12,13. Similarly, we have recently
examined the correlations between secondary structure and
the local amino acid sequence, with the objective of better
understanding secondary structure formation and secondary
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structure prediction algorithms2.
In this study, we examined the strength, organization and

relative importance of correlations between amino acid iden-
tity, secondary structure, and fractional side chain burial,
both for residues neighboring along the amino acid chain,
and for residues proximate in space, but distantly located
along the chain. These interactions are quantified using mu-
tual information and similar measures. To ensure reliable
results we employed a large, non-redundant and diverse col-
lection of protein structures that contains 2,853 sequences.
We find that local sequence-structure correlations along the
chain are far stronger than tertiary structure interactions.
Moreover, once local structural interactions have been ac-
counted for, we find very little correlation between the side
chain identity of spatially proximate residues.

MATERIALS AND METHODS

Correlations and Mutual Information

The correlation between two events can be quantified as the
log likelihood ratio, the log ratio of observing the joint event
p(x, y), against the expected probability of observing the
joint event if the events were uncorrelated p(x)p(y);

L(x, y) = log2

p(x, y)
p(x)p(y)

. (1)

The base of the logarithm is arbitrary, but base 2 is con-
ventional and convenient, resulting in bits as the unit of
measurement.

These correlations represent effective interactions that can
be used in prediction algorithms as an objective function
or additive score. Alternatively, we might invoke a quasi-
chemical approximation12, and think of the log likelihood
ratio as a negative interaction energy, or a free energy, in
units of kBT ln 2, where T is the temperature, kB is Boltz-
mann’s constant and the factor ln 2 ≈ 0.69 converts between
binary and natural logarithms. (Note that 1 bit ≈ 1.7 kJ
mol−1, or ≈ 0.4 kcal mol−1, at ambient temperatures.)

The average strength of the effective interaction between
two variables (the mean of the log odds score) is the mutual
information, a measure of the knowledge that each variable
carries about the other19,20.

I(X;Y ) =
∑
x,y

p(x, y) log2

p(x, y)
p(x)p(y)

(2)

The mutual information is related to the entropy, H(X).

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3)

H(X) = −
∑
x∈X

p(x) log2 p(x) (4)

A high mutual information is a result of strong correla-
tions, whereas zero mutual information indicates uncorre-
lated variables. Mutual information has various advantages

as a correlation measure: It is firmly grounded in informa-
tion theory19; it is additive for independent contributions;
and it has consistent, intuitive units (bits), which allow
for quantitative comparisons between different features and
problem domains. The main disadvantage of information
measures is that they are difficult to calculate accurately,
requiring large data sets and careful error analysis.

The interactions between three variables can be quantified
by the the triplet mutual information, I(3)(X;Y ;Z). This
is the average information carried by the three way interac-
tions, in excess of the information carried by the pairwise
interactions21,22.

I(3)(X;Y ;Z) = −H(X)−H(Y )−H(Z)
+H(X,Y ) +H(X,Z) +H(Y, Z)
−H(X,Y, Z) (5)

Alternatively, we can consider the conditional mutual infor-
mation20 I(X;Y |Z), the information that X carries about
Y , given Z.

I(X;Y |Z) = −H(Z) +H(X,Z) +H(Y,Z)
−H(X,Y, Z)

= I(X;Y ) + I(3)(X;Y ;Z) (6)

The pairwise and conditional mutual informations are
positive. The triplet mutual information can be positive
or negative, and consequentially the conditional mutual in-
formation can be greater or smaller than the unconditioned
mutual information.

Information Bias Correction

Estimating information from limited amounts of data leads
to significant bias23, resulting in a systematic underestima-
tion of the entropy, or overestimation of the mutual infor-
mation. We used bootstrap resampling24 to correct for this
bias, and to estimate standard statistical errors. We gen-
erated fifty replicas of the original data by sampling N se-
quences, with replacement, from the N available sequences.
This resampling has associated systematic and random er-
rors that are approximately the same as the errors intro-
duced by the original finite random sampling of sequences
from the true random distribution. These error estimates
were not significantly improved when the number of repli-
cas was increased from 50 to 500. The requisite pseudo-
random numbers were drawn from the Mersenne Twister
generator25. Note that bootstrap resampling can estimate
errors caused by a finite amount of data, but it cannot cor-
rect for errors due to the inherent biases of our data set.
Moreover, the bootstrap tends to underestimate the magni-
tude of the bias when provided with insufficient data. Our
experience with limited sampling from known distributions
suggests that whenever the estimated bias is comparable to,
or greater than, the estimated standard error, the bootstrap
results should be treated with skepticism.
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Protein Structure Library

Our structure library is based upon a representative, high-
quality and non-redundant subset of available protein struc-
tures. Although we have attempted to minimize sampling
errors, this collection is still inevitably biased, since struc-
tures that are interesting and tractable are over-represented
in the public data, and unordered protein regions are ex-
cluded from crystallographic data. The Protein Data Bank
(PDB)26 currently contains over 20,000 publicly accessible
structures, but many of these are very similar, and many
are of relatively low quality. The Structural Classification
Of Proteins (SCOP)27,28 database provides a convenient de-
composition of PDB structures into 44,000 protein domains.
The ASTRAL compendium29 provides representative sub-
sets of SCOP domains, filtered so that no two domains share
more than a given percentage level of sequence identity. This
filtering reduces the redundancy of the PDB while prefer-
entially retaining higher quality structures, as judged by
AEROSPACI scores29, an agglomeration of several struc-
ture quality measures. We selected the ASTRAL 40% se-
quence identity subset of SCOP release 1.61, which was
further filtered to remove multi-sequence domains, SCOP
classes f (membrane and cell surface proteins) and g (small
proteins), and to retain only those structures determined by
X-ray diffraction at better than 2.5 Å resolution. The pro-
tein sequences were taken from the ASTRAL Rapid Access
Format (RAF) sequence mappings29, which provides a more
reliable and convenient representation of the true sequence
than the PDB ATOM or SEQRES records alone. The ter-
tiary structure of each protein was simplified to just one co-
ordinate for each residue, the location of the β-carbon. For
glycine the location of an imaginary β-carbon was estimated
from the backbone coordinates. The secondary structure
and surface accessibility of each residue were determined us-
ing the program STRIDE30. STRIDE was unable to process
a small number of SCOP domains, which were consequently
removed from further consideration. The resulting struc-
ture template library contains 2,853 protein domains and
553,370 residues, and can be obtained from our website at
http://compbio.berkeley.edu/.

Secondary Structure

Secondary structure is a concise description of a residue’s
backbone torsional angles and pattern of hydrogen bonding.
STRIDE30 assigns each residue to one of 8 classes; α-helix
(H), 310 helix (G), π-helix (I), β-strand (E), β-bridge (B or
b), Coil (C, L, or space), Turn (T) or Bend (S). Unstructured
or poorly resolved regions of the protein are unassigned (X).
These 8 classes were reduced to the three letter alphabet,
E (Extended strand), H (Helix), and L (Loop/Other) us-
ing the common mapping2 E→E, H→H, all others→L. This
substantial reduction of the state space only reduces the sin-
glet amino acid to secondary structure mutual information
by 0.008 bits.

bits std. err. (bias corr.)

I(R;S) (8 states) 0.0893 ±0.0007 (+0.00014)

I(R;S) (3 states) 0.0812 ±0.0007 (+0.00007)

Here, R is the amino acid identity of a single residue, and S
the secondary structure assignment of that residue.

Burial/Surface Accessibility

STRIDE also calculates the exposed surface area of each
residue. These areas are converted to percentages using the
nominal maximum solvent accessibility of a residue in the
tripeptide G-X-G16. We aggregate these surface exposures
into a finite number of burial bins (B), and use dynamic pro-
gramming to determine the exposure thresholds that max-
imize the mutual information I(R;B) between amino acid
identity and burial. The algorithm utilizes the fact that once
a single partition has been chosen, the optimal partitionings
of its left and right sides (into some specified numbers of
bins) are independent of one-another. Thus, a simple recur-
sive algorithm suffices (which can be memorized or ’unrolled’
for speed), which finds the optimal n partitions by choos-
ing the leftmost optimal partition, given the optimal (n−1)
partitions for the remaining space to the right. We settled
upon 4 burial bins as a reasonable compromise between car-
dinality and information gain.

bits std. err. (bias corr.)

I(R;B) (100 bins) 0.214 ±0.001 (+0.0001)

I(R;B) (8 bins) 0.205 ±0.001 (+0.0002)

I(R;B) (4 bins) 0.190 ±0.001 (+0.0003)

I(R;B) (2 bins) 0.150 ±0.001 (+0.0001)

The optimal partitions are 0.0-1.5%, 1.5-17.5%, 17.5-40.0%
and 40.0-100%. Due to algorithmic differences and post-
translational chemical modification, a small number of
residues are assigned an erroneously high surface accessibil-
ity of greater than 100%. These residues are conglomerated
into the largest surface exposure bin.

Interresidue contacts

We define two residues to be in non-local contact if they
are separated by at least 6 residues in the chain, and the
distance between the side chain β-carbons is less than 8 Å.
The number of contacts per residue ranges from 0 to 15,
but more than a few contacts is uncommon. The average
is 2.1 pairings per residue. We are reluctant to heavily op-
timize our definition of inter-residue contact, or to employ
finely partitioned contact distances, lest we inadvertently
directly encode information about the side chain volume or
amino acid identity into the contact potential, in addition
to generic properties of the local structural environment.

Summary

To recapitulate, our data set consists of 2,853 diverse pro-
tein domains containing more than one half million residues.
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Figure 1: Summary of inter- and intra- residue mutual
information. Correlations between neighboring structural
features are relatively strong, but sequence-structure and
sequence-sequence interactions are weak. R: amino acid
identity (20 canonical types); S: secondary structure (He-
lix, strand or loop); B: surface exposure (4 side chain burial
states). For clarity, we only show one numerical value of
each asymmetric interaction pair (e.g. I(R;B′), but not
I(R′;B) ), since the asymmetry is small, as can be seen in
Fig. 2.

Each residue is identified with one of the 20 canonical amino
acids, one of 3 secondary structure classes (helix, strand or
loop), and one of 4 side chain burial states, ranging from
almost entirely buried to mostly exposed. Residues are non-
local neighbors in the tertiary structure if their side chain
β-carbons are separated by less than 8 Å, provided that they
are separated by at least 6 other residues in the sequence.

RESULTS

Figure 1 summaries the mutual information between amino
acid identity (R), burial (B) and secondary structure (S),
both for single residues, and for pairs of neighboring residues
that are either adjacent along the chain, or proximate in
space, but distantly separated along the chain. Tables 1
and 2 show the same data in more detail. The correla-
tions between features of the same residue, and structural
features on neighboring residues, are relatively strong, but
inter-residue sequence-structure and sequence-sequence in-
teractions are surprisingly weak.

Figure 2 shows correlations for residues separated by vary-
ing distances along the chain. It is notable that neighboring
amino acids are almost entirely uncorrelated, and therefore
that the primary structure of proteins in the PDB is ran-
dom at the level of linear amino acid sequences. In con-
trast, secondary structure is strongly correlated along the
chain, and exhibits significant delocalized correlations with
both primary structure and surface exposure. Secondary
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Figure 2: Intra-feature (top) and inter-feature (bottom) mu-
tual information for residues at various separations along
the amino acid chain. Note that the self information
for the same feature on the same residue is the entropy,
I(X;X) = H(X). Interestingly, neighboring amino acids
are approximately independent, and the correlations be-
tween more distantly separated residues are also very small.
This implies that, to a good approximation, amino acid se-
quences of ordered protein structures are essentially random
and uncorrelated31,2. This is despite the fact that such se-
quences have been selected by evolution to fold into compact
and functional shapes. Apparently these special sequences
are randomly scattered throughout sequence space32. Sec-
ondary structure is strongly correlated over extended dis-
tances, both to itself and to the amino acid sequence. This
is to be expected, since secondary structure consists of long
helixes and stands interspersed with loop regions. We have
previously determined that these non-local interactions in-
crease the effective sequence-secondary structure mutual in-
formation from about 0.08 bits (Table 1) to about 0.16 bits
per residue2.

structure features also tend to cluster in space, as is evident
in Figure 1; β-sheets are hydrogen bonded across strands,
and many protein domains are built from mostly strands or
mostly helixes36.

The total, single-residue sequence-structure mutual infor-
mation is I(R;B,S) ≈ 0.26 bits (Table 1), indicating sig-
nificant correlation between local structure and amino acid
identity. This information is approximately additive across
burial and secondary structure, I(R;S,B) ≈ I(R;S) +
I(R;B). The discrepancy is the triplet mutual information
I(3)(R;S;B) = I(R;S,B) − I(R;S) − I(R;B) ≈ −0.014
bits (Eq. 5), which is small compared to the pairwise in-
teractions. This suggests that our definitions of secondary
structure and burial are non-redundant, and that the inter-
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Figure 3: Log likelihood ratio for amino acid side chain burial. The most hydrophobic and hydrophilic residues strongly
segregate between the surface and interior of the protein, the most extreme case being lysine (K), which is 10 times more
likely to be exposed than buried. However, most amino acids have only a weak preference for burial or surface exposure,
resulting in a net burial-sequence mutual information of only 0.19 bits. Interestingly, tryptophan (W), histidine (H) and
tyrosine (Y) have a preference to be partially exposed rather than totally buried or totally exposed. These residues all have
large side chains containing both hydrophobic and hydrophilic moieties. Residues are ordered by ∆Gtransfer/[RT ln 2], the
experimental free energy for transferring the amino acid between water and octanol33,34 (converted to bits), a conventional
measure of hydrophobicity. (See also Fig. 5)
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Figure 4: Residue propensity for secondary structure elements. Some residues clearly favor particular secondary structure
features; glycine (G) and proline (P) are over-represented in loops35, valine (V) and isoleucine (I) in strands, and alanine
(A) in helixes. However, these preferences are not particularly strong, resulting in a net single-site secondary structure to
amino acid identity mutual information of only 0.08 bits. This sparsity of information is responsible for the poor perfor-
mance of algorithms that attempt to directly predict secondary structure from the primary structure alone2. Residues are
ordered by their nominal hydrophobicity, as in figure 3. This reveals a slight preference for hydrophilic residues in helixes
and loops, and hydrophobic residues in strands.

actions between these different structural features and the
amino acid sequence are approximately independent. Fig-
ures 3, 4 and 5 explore these single-site correlations in more
detail.

The additional sequence-structure information that can
be obtained from neighboring residues, given the local
structural context, is the conditional mutual information
I(R;S′, B′|S,B). Unfortunately, a direct calculation of this
mutual information is impractical due to the large dimen-

sion of the underlying probability distribution (20×32×42),
and the finite size of our data set. This results in a large
mutual information bias that is beyond the ability of our
bootstrap error analysis to correct. A more effective bias
correction can be obtained by performing a full Bayesian
analysis38, but this requires the determination of a rea-
sonable prior distribution. To avoid this additional com-
plication, we take a more direct approach and approxi-
mate the full conditional information as the sum of (ap-
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Figure 5: The segregation of residues between the interior
and surface of a protein is principally due to hydrophobic
effects16,17. The vertical axis is the free energy change for
transferring N-acetyl-amino-acid amides from water to oc-
tanol33,34. The transfer free energy of glycine (G) has been
set to zero, and we have converted from units of kcal/mol
to free entropies measured in bits. The horizontal axis (also
measured in bits) is the log odds difference between buried
and exposed residues, ∆L = log2 p(r, b0)/[p(r)p(b0)] −
log2 p(r, b3)/[p(r)p(b3)], where, b0 is a surface exposure of
less than 1.5%, and b3 is a surface exposure of greater than
40%. This is essentially the free entropy for transferring a
residue from the interior to the exterior of a protein. The
transfer free entropy between octanol and water measures
the hydrophobicity of the residue. The log odds difference
includes hydrophobic effects, but is also influenced by pro-
tein structure and evolution. Nonetheless, there is a near
quantitative agreement between these two measures, indi-
cating that hydrophobicity is the primary determinate of
the frequency with which different residues segregate to the
interiors of proteins. The trend line has a slope of 0.70. It
has been suggested that proline is frequently exposed due
to steric effects and, that cysteine is often buried due to
disulphide bonding37,34. However, this figure indicates that
the burial frequency of both residues can be adequately ex-
plained by hydrophobicity alone.

proximately) independent parts, as suggested by the results
for the single site sequence-structure mutual information,
I(R;S,B) ≈ I(R;S) + I(R;B). Thus, the additional infor-
mation obtained from considering the structure of a neigh-
boring residue, given the local structural context, can be
split into approximately independent burial and secondary
structure contributions

I(R;S′, B′|S,B) ≈ I(R;S′|S) + I(R;B′|B)

These quantities are tabulated in Table 3. Therefore, the ad-
ditional sequence-structure information is about 0.030 bits
per residue for local neighbors and 0.015 bits for contacts, in
excess of the previously determined single site mutual infor-

Table 1: Single residue mutual information.

bits std. err. (bias corr.)

I(R;S,B) 0.257 ±0.0014 (+0.0006)

I(R;S) (3 states) 0.0812 ±0.0007 (+0.0001)

I(R;B) 0.1900 ±0.0013 (+0.0002)

I(B;S) 0.0633 ±0.0010 (−0.0001)

I(3)(R;S;B) −0.014 ±0.0021 (+0.0010)

mation of 0.26 bits. Note that almost every residue has two
nearest neighbors along the chain, and an average of about
2 neighbors through space. Thus the total information con-
tent of these sequence-structure interactions is about 0.35
bits per residue.

Having dealt with structure-structure and sequence-
structure correlations, the remaining pairwise interactions
to consider are those between amino acid identity at neigh-
boring sites. The use of contact sequence correlations for
structure template matching is the central idea underlying
protein threading, yet it is clear from Fig. 1 that the direct
mutual information is small: I(R;R′) ≈ 0.006 for primary
structure neighbors, and 0.027 bits for contacts. As with
structural features, we should consider the inter-amino acid
correlations given the local structure, I(R;R′|S′, B′, S,B).
This is an estimate of the information contained in inter-
residue contact potentials. As above, we can approximate
this mutual information by a collection of simpler, approxi-
mately independent contributions;

I(R;R′|S′, B′, S,B) ≈ I(R;R′)
+(I(R;R′|S′, S)− I(R;R′))
+(I(R;R′|B,B′)− I(R;R′)) .

From Table 3, this inter-sequence information is about 0.01
bits for local neighbors and 0.02 bits for contacts. The cor-
relation between amino acid identity at neighboring sites is
very small, whether or not those correlations are conditioned
on the local structure.

In a previous investigation Cline et al.18 measured an
inter-amino acid contact correlation, given that neither
residue is located in a loop, of 0.04 bits per contact. As a
comparison we have measured this same correlation on our
dataset, using Cline’s parameters. We agree qualitatively,
but find that this inter-residue correlation in our data is
only 0.02 bits per contact, about half as strong as in the
Cline data set. This degree of difference is not unexpected,
since our dataset is more recent, contains an order of magni-
tude more sequence data, and is more structurally diverse.
However, this comparison suggests that partitioning the pro-
tein data into structural classes may marginally increase the
apparent inter-residue mutual information.

In summary, the mutual information between the amino
acid sequence and the local protein structure is a few tenths

6



Table 2: Mutual information between neighboring residues.

Adjacent in Primary Structure Proximate in Tertiary Structure

bits std. err. (bias corr.) bits std. err. (bias corr.)

I(R;R′) 0.0058 ±0.0002 (+0.0005) 0.0268 ±0.0003 (+0.0002)

I(R;B′) 0.0066 ±0.0002 (+0.00009) 0.0183 ±0.0003 (+0.00005)

I(R;S′) 0.0468 ±0.0004 (+0.00006) 0.0203 ±0.0003 (+0.00006)

I(B;B′) 0.0755 ±0.0011 (+0.0001) 0.0822 ±0.0009 (+0.00001)

I(S;S′) 0.898 ±0.0017 (−0.0001) 0.1443 ±0.0028 (−0.00015)

I(S;B′) 0.0511 ±0.0007 (+0.00009) 0.0117 ±0.0003 (+0.00006)

Table 3: Additional mutual information from neighboring residues, conditioned upon local structure.

Adjacent in Primary Structure Proximate in Tertiary Structure

bits std. err. (bias corr.) bits std. err. (bias corr.)

I(R;S′|S) 0.0153 ±0.00098 (−0.00001) 0.0120 ±0.0014 (+0.00083)

I(R;B′|B) 0.0148 ±0.00190 (+0.00002) 0.0032 ±0.0022 (+0.00115)

I(R;S′, B′|S,B) 0.0301 ±0.00214 (+0.00001) 0.0152 ±0.0027 (+0.00198)

I(R;R′|S, S′) 0.0160 ±0.0037 (+0.0037) 0.0189 ±0.0003 (+0.0021)

I(R;R′|B,B′) 0.0100 ±0.0004 (+0.0077) 0.0207 ±0.0003 (+0.0037)

I(R;R′|S, S′, B,B′) 0.0112 ±0.0038 (+0.0109) 0.0202 ±0.0005 (+0.0056)

of a bit per residue, whereas the information content of
amino acid correlations is only a few hundredths of a bit
per proximate pair. The strongest observed determinant
of local protein structure was hydrophobicity. The precise
numerical values of these measurements will obviously de-
pend on the exact procedure for coarse-graining the protein
structure, the choice of local structure features, and also
upon the selection of protein structures to study. However,
it is implausible that any reasonable change in our method-
ology, such as adjusting the definition of amino acid con-
tacts, could substantially alter the relative magnitudes of
sequence-structure and sequence-sequence interactions.

DISCUSSION

Amino acid contact potentials have been widely used in
many simplified protein structure prediction algorithms, and
in simplified models of proteins folding8,9,10,11,12,13. How-
ever, the signal from these tertiary contact correlations is
far less than that embedded in burial, secondary structure,
and other local structural features. We might reasonably
question whether contact potentials materially contribute
to the performance of these structure prediction algorithms
in practice. One alternative to contact potentials is to em-
brace greater molecular detail in protein structure predic-
tion, while still keeping the model simple enough to be com-

putationally tractable5. On the other hand, if we disre-
gard direct amino acid contact correlations altogether, then
threading, and many similar structure prediction methods,
can be recast in term of protein structure profiles6, which
are computationally efficient, and conceptually very similar
to the sequence profile methods used for homology detec-
tion.39

Many effective structure prediction methods incorporate
evolutionary information, as well as structure-sequence cor-
relations. For detectable remote pairwise similarity, the mu-
tual information for aligned amino acids is about 2/3 bit
per residue (entropy of BLOSUM62 substitution matrix40),
whereas multiple sequence alignments typically provide 1-3
bits per position41. It appears that amino acid correlations
due to evolutionary constraints are stronger than those im-
posed by structural constraints alone. Thus, many struc-
ture prediction methods that incorporate homology might
be more accurately thought of as complex homology detec-
tion algorithms that are enhanced by limited amounts of
structural information.

In principle, direct interactions between amino acids de-
termine the native structure of a protein. Therefore, it is
somewhat puzzling that these interactions do not lead to
strong inter-residue amino acid correlations. It is possible
that the important details of the molecular interactions are
washed out when we use a fixed template structure or other-
wise coarse-grain the protein structure. However, it is inter-
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esting to ask how strong we should expect any primary-to-
tertiary structure interaction to be. One available datapoint
is the free energy of protein folding, an approximate measure
of tertiary structure stability. The stability of small, single
domain proteins is typically about42 ∆G ≈ 20–60 kJ mol−1.
At ambient temperatures, this corresponds to a free entropy
change of ∆ψ ≈ 600 kJ mol−1 K−1. The conversion factor
between traditional thermodynamic entropy units and bits
is R ln 2, where R = kBNA is the gas constant, and ln 2
converts between natural and base 2 logarithms. Thus, the
typical free entropy difference between native and denatured
protein is about ∆ψfolding ≈ 10–30 bits per macromolecule,
or a few tenths of a bit per residue. This entropy of folding
represents the cumulative effect of many molecular interac-
tions, and does not directly correspond to any of the coarse-
grained structural entropies studied in this work. However,
it does provide a pertinent sense of scale, and reaffirms that
protein structure determination is difficult because the inter-
actions between amino acid sequence and macro-molecular
structure are subtle.
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