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Abstract

There are only a very few known relations in statistical dynamics that
are valid for systems driven arbitrarily far away from equilibrium by an ex-
ternal perturbation. One of these is the fluctuation theorem, which places
conditions on the entropy production probability distribution of nonequilib-
rium systems. Another recently discovered far-from-equilibrium expression
relates nonequilibrium measurements of the work done on a system to equi-
librium free energy differences. In contrast to linear response theory, these
expressions are exact no matter the strength of the perturbation, or how far
the system has been driven from equilibrium. In this work I show that these
relations (and several other closely related results) can all be considered
special cases of a single theorem. This expression is explicitly derived for
discrete time and space Markovian dynamics, with the additional assump-
tions that the unperturbed dynamics preserve the appropriate equilibrium
ensemble, and that the energy of the system remains finite.

These theoretical results indicate that the most interesting nonequi-
librium phenomena will be observed during rare excursions of the system
away from the stable states. However, direct simulation of the dynamics is
inherently inefficient, since the majority of the computation time is taken
watching small, uninteresting fluctuations about the stable states. Tran-
sition path sampling has been developed as a Monte Carlo algorithm to
efficiently sample rare transitions between stable or metastable states in
equilibrium systems. Here, the transition path sampling methodology is
adapted to the efficient sampling of large fluctuations in nonequilibrium
systems evolving according to Langevin’s equations of motion. Simulations
are then used to study the behavior of the Maier-Stein system, an impor-
tant model for a large class of nonequilibrium systems. Path sampling is
also implemented for the kinetic Ising model, which is then employed to
study surface induced evaporation.
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0. Introduction

This fundamental law [〈A〉 = 1
Z

∑
i Aie−βEi ] is the summit of

statistical mechanics, and the entire subject is either the slide-
down from this summit, as the principle is applied to various
cases, or the climb-up to where the fundamental law is derived. . .
— R. P. Feynman [32]

Equilibrium statistical mechanics has a simple and elegant structure.
For any appropriate system (typically one with a moderate to very large
number of degrees of freedom in thermal contact with a heat bath), the
phase space probability distribution of the system at equilibrium is given
by the canonical distribution of Gibbs [33]. This expression is very general,
since the details of a particular system enter through the density of energy
states, and the dynamics of the system are almost irrelevant. The explicit
calculation of the properties of the system may be hard or impossible in
practice, but at least we know where to start.

The development of statistical dynamics has not (yet?) reached this
level of elegance. There are simple, useful and wide ranging nonequilib-
rium theories, such as nonequilibrium thermodynamics and linear response.
However, these theories are all approximations that are limited in their
range of applicability, typically to systems very near equilibrium. This is
a distressing characteristic for a subject whose ambitions should encom-
pass general nonequilibrium dynamics, irrespective of the proximity of the
ensemble to equilibrium. Ideally, the fundamental relations of statistical
dynamics would be applicable to many different dynamics without modifi-
cation, and would be exact no matter how far the system had been driven
from equilibrium. Near equilibrium theorems would be simple approxima-
tions of these exact relations. The explicit calculation of the statistical
properties of the dynamics might be hard or impossible in practice, but at
least we would know where to start.

The situation has improved in recent years. Several relations have been
discovered that are valid for thermostatted systems that have been driven
arbitrarily far from equilibrium by an external perturbation. In 1993 Evans,
Cohen, and Morriss [1] noted that fluctuations in the nonequilibrium en-
tropy production obey a simple relation, which has subsequently been for-
mulated as the entropy fluctuation theorem(s) (see Chapter 3). A flurry
of activity has extended these relations to many different dynamics (both
deterministic and stochastic), and has shown that some near equilibrium
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theorems can be derived from them. In an entirely independent develop-
ment, C. Jarzynski [34] derived a relation between ensemble averages of the
nonequilibrium work and equilibrium free energy differences. This was also
extended to cover a variety of different dynamics and ensembles.

The first part of this thesis (Chapters 1-5) is based on the observa-
tion that these disparate far-from-equilibrium relations are actually closely
related, and can be derived from the same, simple assumptions. Indeed,
both these relations (and several others) can be considered special cases
of a single theorem. The principle that unifies these theorems and their
applicable dynamics is that the probability of trajectory in a thermostat-
ted system is related to the probability of the corresponding time reversed
trajectory. This principle, referred to hereafter as microscopic reversibility,
is applicable to many of the dynamics that are routinely used to model real
systems. The genesis of these ideas, and their chronological development,
can be traced in Refs. [35,13,18].

In Chapters 6-7 I turn to the related problem of efficiently simulating
nonequilibrium systems. For equilibrium properties it is often advanta-
geous to use the Monte Carlo algorithm to sample state space with the
correct probabilities. Similarly, it can be advantageous to use Monte Carlo
to sample the trajectory space of a nonequilibrium system. The necessary
computational power is now readily available, and efficient methods for gen-
erating a Markov chain of trajectories have recently been developed. I use
these techniques to study the nonequilibrium behavior of several stochastic
systems.

The subject of far-from-equilibrium statistical dynamics is still in its
infancy, and many limitations and obstacles remain. Perhaps the most
serious of these is that it is extremely difficult to observe the direct conse-
quences of the far-from-equilibrium theorems in real systems. However, it
should be possible to test these relations for realistic models using path en-
semble Monte Carlo, and it seems probable that practical approximations
await discovery. The explicit calculation of dynamic properties, and the
direct application of exact far-from-equilibrium relations may be hard or
impossible in practice, but at least we have made a start.
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1. Microscopic Reversibility

We will begin by embarking on the climb.
— R. P. Feynman [32]

1.1 Introduction

Consider a classical system in contact with a constant temperature
heat bath where some degree of freedom of the system can be controlled.
Manipulation of this degree of freedom will result in an expenditure of some
amount of work, a change in energy and free energy of the system, and an
exchange of heat with the bath. A concrete example is illustrated below;
a classical gas confined in a cylinder by a movable piston. The walls of
this cylinder are diathermal so that the gas is in thermal contact with the
surroundings, which therefore act as the bath. Work can be applied to the
system by moving the piston in or out. The value of the controllable, work
inducing, parameter (in this case the position of the piston) is traditionally
denoted by the variable λ.

λ(t)

The results in the following chapters are based on the following prin-
ciple: If a system is in contact with a heat bath then the probability of a
particular trajectory (given the initial state) is related to the probability
of the corresponding time reversed trajectory by a simple function of the
temperature and the heat. This relation remains valid for systems that
have been driven far from equilibrium∗ by an external perturbation.

∗The phrases nonequilibrium and far-from-equilibrium have more than one connota-
tion. In this work, far-from-equilibrium refers to a configurational ensemble that is very
different from the equilibrium ensemble of the same system because the system has been



4 Microscopic Reversibility 1.

This important property, which I refer to as microscopic reversibility,
was originally shown to be applicable to detailed balanced stochastic dy-
namics as an intermediate step in the proof of the Jarzynski nonequilibrium
work relation [35] (See Chapter 4.) This has since been generalized to in-
clude many of the dynamics used to model thermostatted system [17, 18].
Here, I will show that systems are microscopically reversible if the energy is
alway finite, and the dynamics are Markovian and preserve the equilibrium
distribution of an unperturbed system.

1.2 Discrete time Markov chains

For simplicity, consider a system with stochastic dynamics, a finite set
of states, x ∈ {1, 2, 3, · · · , N}, and a discrete time scale t ∈ {0, 1, 2, 3, · · · , τ}.
In other words, a discrete time Markov chain. The energies of the states of
the system are given by the vector E. If these state energies do not vary
with time then the stationary probability distribution, πx, is given by the
canonical ensemble of equilibrium statistical mechanics;

πx = ρ(x|β,E) =
e−βEx

∑

x

e−βEx
= exp {βF − βEx} . (1.1)

In this expression, β = 1/kBT , T is the temperature of the heat bath, kB

is Boltzmann’s constant†, F (β,E) = −β -1 ln
∑

x exp{−βEx} = −β -1 lnZ,
is the Helmholtz free energy of the system, Z is the canonical partition
function, and the sums are over all states of the system. This distribution,
ρ(x|β,E), is the probability of state x given the temperature of the heat
bath and the energies of all the states. We adopt the convention that
when there is insufficient information to uniquely determine the probability
distribution, then the maximum entropy distribution should be assumed
[36,37,38].

In contrast to an equilibrium ensemble, the probability distribution of
a nonequilibrium ensemble is not determined solely by the external con-
straints, but explicitly depends on the dynamics and history of the system.
The state of the system at time t is x(t), and the path, or trajectory that
the system takes through this state space can be represented by the vector
x =

(
x(0), x(1), x(2), · · · , x(τ)

)
. For Markovian [39] dynamics the probabil-

ity of making a transition between states in a particular time step depends
only on the current state of the system, and not on the previous history.
perturbed away from equilibrium by an external disturbance. Elsewhere, nonequilibrium
is used to refer to an ensemble that cannot reach equilibrium because the dynamics are
very slow or glassy.

†In theoretical work such as this, it is convenient to measure entropy in nats (= 1/ ln 2
bits) [20]. Boltzmann’s constant can then be taken to be unity.
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The single time step dynamics are determined by the transition matrix‡

M(t) whose elements are the transition probabilities,

M(t)x(t+1)x(t) ≡ P
(
x(t)→ x(t+1)

)
.

A transition matrix M , has the properties that all elements must be non-
negative, and that all columns sum to one due to the normalization of
probabilities.

Mij ! 0 for all i and j,
∑

i

Mij = 1 for all j.

Let ρ(t) be a (column) vector whose elements are the probability of
being in state i at time t. Then the single time step dynamics can be
written as

ρ(t+1) = M(t) ρ(t), (1.2)

or equivalently as
ρ(t+1)i =

∑

j

M(t)ij ρ(t)j .

The state energies E(t) and the transition matrices M(t) are functions
of time due to the external perturbation of the system, and the resulting
Markov chain is non-homogeneous in time [43]. The vector of transition ma-
trices M =

(
M(0),M(2), · · · ,M(τ−1)

)
completely determine the dynamics

of the system. We place the following additional constraints on the dynam-
ics: the state energies are always finite (this avoids the possibility of an
infinite amount of energy being transferred from or to the system), and the
single time step transition matrices must preserve the corresponding canon-
ical distribution. This canonical distribution, Eq. (1.1), is determined by
the temperature of the heat bath and the state energies at that time step.
We say that such a transition matrix is balanced, or that the equilibrium
distribution π(t) is an invariant distribution of M(t).

π(t) = M(t)π(t)

Essentially this condition says that if the system is already in equilibrium
(given E(t) and β), and the system is unperturbed, then it must remain in
equilibrium.

It is often convenient to impose the much more restrictive condition of
detailed balance,

M(t)ij π(t)j = M(t)ji π(t)i . (1.3)
‡In much of the Markov chain literature (e.g., [40, 41, 39]) a different convention is

used such that the transition matrix is the transpose of the matrix defined here, and
the probability density is represented by a row vector rather than a column vector. The
convention used in this work is common in the physics literature (e.g., [42])
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In particular many Monte Carlo simulations are detailed balanced. However
it is not a necessity in such simulations [42], and it is not necessary here.
It is sufficient that the transition matrices are balanced.

Microscopic reversibility is a relation between probability ratios of tra-
jectories and the heat. The heat Q, is flow of energy into into the system
from the attached heat bath, and the work W is the change in energy due
to mechanical perturbations applied to the system. These definitions are
perfectly adequate for macroscopic thermodynamics [44], but it may not be
immediately clear how they should be expressed in terms of the microscopic
degrees of freedom common in statistical dynamics.

Consider this sketch of the

E

t

Figure 1.1: Microscopic dynamics of a
three state system.

microscopic dynamics of a three
state system. The horizontal axis
is time, the vertical axis is en-
ergy, and the dot represents the
current state of the system. In
the first step the system makes a
transition between states. This
transition could occur even if
there is absolutely no external
perturbation of the system, and
therefore no work done on the
system. Therefore, this energy
change can be associated with an exchange of energy with the heat bath.
In the second step the system remains in the same state, but the energy of
the system changes because the external perturbation changed the energies
of all the states. We associate this change in energy with the work. Thus,
on a microscopic level the heat is a change in energy due to a change in the
state of the system, and the work is a change in energy due to a change in
the energy of the state that the system currently resides in.

These definitions of work and heat can readily be applied to the Marko-
vian dynamics defined above. Each time step of this dynamics can be sep-
arated into two distinct substeps. At time t = 0 the system is in state
x(0) with energy E(0)x(0). In the first substep the system makes a stochas-
tic transition to a state x(1) which has energy E(0)x(1). This causes an
amount of energy, E(0)x(1) − E(0)x(0), to enter the system in the form of
heat. In the second substep the state energies change from E(0) to E(1)
due to the systematic perturbation acting on the system. This requires an
amount of work, E(1)x(1) − E(0)x(1). This sequence of substeps repeats for
a total of τ time steps‡. The total heat exchanged with the reservoir, Q,
the total work performed on the system, W, and the total change in energy,
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∆E, are therefore

Q[x] =
τ−1∑

t=0

[
E(t)x(t+1) −E(t)x(t)

]
, (1.4)

W[x] =
τ−1∑

t=0

[
E(t+1)x(t+1) −E(t)x(t+1)

]
, (1.5)

∆E = E(τ)x(τ) −E(0)x(0) = W + Q. (1.6)

The reversible work, Wr = ∆F = F
(
β,E(τ)

)
− F

(
β,E(0)

)
, is the free

energy difference between two equilibrium ensembles. It is the minimum
average amount of work required to change one ensemble into another. The
dissipative work, Wd[x] = W[x]−Wr, is defined as the difference between
the actual work and the reversible work. Note that the total work, the
dissipative work and the heat are all path functions. In this thesis they are
written with script letters, square brackets and/or as functions of the path,
x, to emphasize this fact. In contrast ∆E is a state function; it depends
only on the initial and final state.

Now we will consider the effects of a time reversal on this Markov
chain. In many contexts a time reversal is implemented by permuting the
states of the system. For example, in a Hamiltonian system a time reversal
is typically implemented by inverting the momenta of all the particles.
However, it is equivalent, and in the current context much more convenient,
to apply the effects of the time reversal to the dynamics rather than the
state space. Thus, the time reversed trajectory x̂ is a simple reordering of
the forward trajectory; x̂(t) = x(τ -t) and Ê(t) = E(τ -t).

We can derive the effect of a time reversal on a transition matrix
by considering a time homogeneous Markov chain, a chain with a time-
independent transition matrix. Let π be the invariant distribution of the
transition matrix. If the system is in equilibrium then a time reversal
should have no effect on that distribution. Therefore, the probability of
observing the transition i→ j in the forward chain should be the same as
the probability of observing the transition j → i in the time reversed chain.
Because the equilibrium probability distribution is the same for both chains
it follows that

M̂ji πi = Mij πj for all i, j . (1.7)

In matrix notation this may conveniently be written as

M̂ = diag(π)MT diag(π)−1.
‡An astute reader will note that the order of the heat and work substeps has been

changed when compared with earlier work [35]. This minor change (it amounts to no
more than relabeling forward and reverse chains) was made so that the time indexing
of the forward chain transition matrix would be compatible with that used in the non-
homogeneous Markov chain literature [43].
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Here, diag(π) indicates a matrix whose diagonal elements are given by the
vector π. M̂ is referred to as the reversal of M [39], or as the π-dual of
M [41]. If the transition matrix obeys detailed balance, Eq. (1.3), then
M̂ = M .

It is easy to confirm that M̂ is a transition matrix; all entries are
nonnegative because all equilibrium and transition probabilities are non-
negative, and all rows sum to 1,

∑

j

M̂ji =
1
πi

∑

j

Mij πj =
πi

πi
= 1 for all i .

Furthermore, we can demonstrate that M̂ and M have the same invariant
distribution, ∑

i

M̂ji πi =
∑

i

Mij πj = πj .

As an illustration of this time reversal operation consider the Markov
chain described by the diagram below, and the corresponding stochastic
matrix. States are numbered 1 through 6, and transitions are indicated by
arrows labeled with the transition probability. The system tends to rotate
clockwise through the states (1,2,3) and anticlockwise through the states
(4,5,6). The equilibrium probability distribution is π = ( 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) and
M̂ = MT . Accordingly, the diagram of the time reversed Markov chain is
the same except that all arrows reverse direction. Thus, the order in which
states are visited reverses, and the system will tend to rotate anticlockwise
through the states (1,2,3) and clockwise through the states (4,5,6).

1

23

4

56

1
3

1
3

1
3

2
3

2
3

2
3

2
3

2
3

2
3

M =





0 0 2
3

1
3 0 0

2
3 0 0 0 1

3 0
0 2

3 0 0 0 1
3

1
3 0 0 0 2

3 0
0 1

3 0 0 0 2
3

0 0 1
3

2
3 0 0





For the non-homogeneous chain, the time reversal of the vector of
transition matrices, M, is defined as

M̂(t) = diag(π(τ -t))M(τ -t)T diag(π(τ -t))−1. (1.8)
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The time reversal operation is applied to each transition matrix, and their
time order is reversed. Note that for the transition matrices of the reverse
chain the time index runs from 1 to τ , rather than 0 to τ−1. Therefore,
M(t) is the transition matrix from time t to time t+1 (see Eq. (1.2)), but
M̂(t) is the transition matrix from time t−1 to time t.

ρ̂(t) = M̂(t) ρ̂(t−1) . (1.9)

This convention is chosen so that the time indexes of the various entities
remain consistent. Thus, for the reverse chain at time t the state is x̂(t),
the states energies are Ê(t) and the corresponding equilibrium distribution
is π̂(t), which is an invariant distribution of M̂(t).

Another consequence of the time reversal is that the work and heat
substeps are interchanged in the reverse chain. The heat, total work, and
dissipative work are all odd under a time reversal: Q[x] = −Q[x̂], W[x] =
−W[x̂] and Wd[x] = −Wd[x̂]. The total change in energy and the free
energy change are also odd under a time reversal, but to avoid ambiguity
a ‘∆’ always refers to a change measured along the forward process.

As an illustration, consider the following diagram of a short Markov
chain.

x(0)
M(0)−→ •x(1)

M(1)−→ •x(2)
M(2)−→ •x(3)

x̂(3)
M̂(3)←− • x̂(2)

M̂(2)←− • x̂(1)
M̂(1)←− • x̂(0)

The stochastic transitions are indicated by arrows which are labeled with
the appropriate transition matrix. The bullets (•) indicate the points in
time when the perturbation acts on the system.

We are now in a position to prove an important symmetry for the
driven system under consideration. Let P[x|x(0),M] be the probability of
observing the trajectory x, given that the system started in state x(0). The
probability of the corresponding reversed path is P̂[x̂|x̂(0), M̂]. The ratio
of these path probabilities is a simple function of the heat exchanged with
the bath

P[x|x(0),M]
P̂[x̂|x̂(0), M̂]

= exp
{
−βQ[x]

}
. (1.10)

At the risk of ambiguity, a system with this property will be described
as microscopically reversible [35,13,16,17]. In current usage the terms “mi-
croscopically reversible” and “detailed balance” are often used interchange-
ably [46]. However, the original meaning of microscopic reversibility [47,48]
is similar to Eq. (1.10). It relates the probability of a particular path to its
reverse. This is distinct from the principle of detailed balance [45, 46, 49],
Eq. (1.3), which refers to the probabilities of changing states without ref-
erence to a particular path.
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We proceed by expanding the path probability as a product of single
time step transition probabilities. This follows from the condition that the
dynamics are Markovian.

P[x|x(0),M]
P̂[x̂|x̂(0), M̂]

=

τ−1∏

t=0

P
(
x(t)→ x(t+1)

)

τ−1∏

t′=0

P̂
(
x̂(t′)→ x̂(t′+1)

)

For every transition in the forward chain there is a transition in the
reverse chain related by the time reversal symmetry, Eq. (1.8). The path
probability ratio can therefore be converted into a product of equilibrium
probabilities.

P[x|x(0),M]
P̂[x̂|x̂(0), M̂]

=
τ−1∏

t=0

π(t)x(t+1)

π(t)x(t)

=
τ−1∏

t=0

ρ(x(t+1)|β,E(t))
ρ(x(t)|β,E(t))

= exp
{
−β

τ−1∑

t=0

[
E(t)x(t+1) −E(t)x(t)

]}

= exp
{
− βQ[x]

}

The second line follows from the definition of the canonical ensemble,
Eq. (1.1), and the final line from the definition of the heat, Eq. (1.4).

The essential assumptions leading to microscopic reversibility are that
accessible state energies are always finite, and that the dynamics are Marko-
vian, and if unperturbed preserve the equilibrium distribution. These con-
ditions are valid independently of the strength of the perturbation, or the
distance of the ensemble from equilibrium. Given that a system is mi-
croscopically reversible the derivation of a variety of far-from-equilibrium
expressions is a relatively simple matter. The impatient reader may skip
ahead to the next chapter without significant loss, as the remainder of this
chapter will be devoted to extensions and generalizations.

1.3 Continuous-time Markov chains

Consider a Markov process with finite set of states, x ∈ {1, 2, 3, · · · , N},
and a continuous time scale, t ∈ [0, τ) [39]. We assume that the process is
non-explosive (there are only a finite number of state transitions in a finite
time) and that the process is right-continuous, which in this context means
that for all 0 " t < τ there exists ε > 0 such that

x(s) = x(t) for t " s " t + ε.
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Therefore, during the time interval [0, τ) the system makes a finite
number of transitions between states. These transitions occur instanta-
neously, after which the system resides in the same state for a finite amount
of time. These transitions occur at the jump times, t1, t2, · · · , tJ . We
set t0 = 0 and tJ = τ , and require that the jump times are ordered;
tj−1 < tj < tj+1. The following diagram should clarify these definitions.

x

0 t1 t2 t3 t4 τ

The dynamics of this process can conveniently be described by a tran-
sition rate matrix¶, or Q-matrix, Q(t). The off-diagonal elements of a
Q-matrix are nonnegative, and all columns sum to zero.

Qij ! 0 for all i )= j
∑

i

Qij = 0 for all i

The negatives of the diagonal elements −Qii are the rate of leaving state i,
and the off-diagonal elements Qij give the rate of going from state j to state
i. For a homogeneous Markov process the finite time transition matrix, M ,
can be obtained from a matrix exponential of the corresponding Q matrix.

M = eτQ =
∞∑

k=0

(τQ)k

k!

Because M is a polynomial in Q it follows that Q and M always have the
same invariant distributions. The elements Mij are the probabilities of the
system being in state i at time τ given that it was in state j at time 0. This
representation therefore loses information about the path that was taken
between state j and state i.

An alternative approach, one that is more useful in the current context,
is to consider explicitly the probability of a trajectory such as the one
illustrated above. The total probability can be broken into a product of
single step transition probabilities. These in turn can be split into a holding
time probability and a jump probability.

P[x|x(0),Q] =
J-1∏

j=0

PH

(
x(tj)

)
PJ

(
x(tj)→ x(tj+1)

)
(1.11)

¶As with the transition matrix M , this Q-matrix is defined as the transpose of the
Q-matrix normally used in the Markov chain literature.
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The holding time probability, PH

(
x(tj)

)
, is the probability of holding

in state x(tj) for a time tj+1−tj , before making a jump to the next state.
For a non-homogeneous chain we can write the holding time probabilities
in terms of the diagonal elements of Q(t),

PH

(
x(tj)

)
= exp

{∫ tj+1

tj

Q(t′)x(tj)x(tj) dt′
}

.

The jump probabilities, PJ

(
x(tj) → x(tj+1)

)
, are the probabilities of

making the specified transition given that some jump has occurred;

PJ

(
x(tj)→ x(tj+1)

)
= −Q(tj+1)x(tj+1)x(tj)/Qx(tj)x(tj) .

Note that the jump form state x(tj) to x(tj+1) occurs at time tj+1, and
that the jump probabilities depend only on the transition rate matrix at
that time.

The time reversal of a continuous time chain [39, p. 123] is very similar
to the time reversal of the discrete time chain. First the states, state
energies and jump times are reordered: x̂(t) = x(τ -t), Ê(t) = E(τ -t) and
t̂j = τ−tJ-j for all j. These transformations have the effect of turning the
right-continuous forward process into a left continuous reverse process.

Once more we insist that an equilibrium ensemble should be unaffected
by a time reversal, and that the probability of a transition in equilibrium
should be the same as the probability of the reverse transition in the reverse
dynamics. The time reversal of the transition rate matrix is then identical
to the time reversal of the discrete time transition matrix.

Q̂(t) = diag(π(τ -t))Q(τ -t)T diag(π(τ -t))−1

Recall that π(t) is the invariant distribution of Q(t), which is identical to
the probability distribution defined by equilibrium statistical mechanics,
π(t) = ρ(x|β,E(t)).

This transformation does not alter the diagonal elements of Q. It
follows that the holding time probabilities of the reverse path are the same
as those in the forward path. The jump probabilities of the forward path
can be simply related to the jump probabilities of the reverse path via
the time reversal operation. With these observations and definitions it is
now possible to show that continuous time Markovian dynamics is also
microscopically reversible.

P̂[x̂|x̂(0), Q̂] =
J-1∏

j=0

PH

(
x̂(t̂j+1)

)
PJ

(
x̂(t̂j)→ x̂(t̂j+1)

)

=
J-1∏

j=0

PH

(
x(tj)

)
PJ

(
x(tj)→ x(tj+1)

) ρ(x(tj)|β,E(tj))
ρ(x(tj+1)|β,E(tj))
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= P[x|x(0),Q] exp
{

+βQ[x]
}

1.4 Continuous-time and space Markov pro-
cesses

There are many advantages to working with a finite, discrete state
space. It allows exploitation of the large Markov chain literature, rigorous
derivations of results can be relatively easy, and it corresponds directly
to simulations on classical computers. However, most physical systems
studied in statistical mechanics have a continuous phase space. Typically,
such systems consist of a large number of interacting particles and the
state of the system can be described by an element of Rn, where n is the
number of degrees of freedom of the system. In the following section we
will discuss the necessary conditions for microscopic reversibility in these
systems. However, the reader should be aware that some measure theoretic
subtleties are being ignored. For example, the state of the system should,
strictly speaking, be represented by an element of a Borel set, rather than
an arbitrary element of Rn.

Let x(t) be the state of the system at time t. The phase space proba-
bility density is ρ(x, t). The time evolution of the probability density can
be described by an operator , U [40, 50,51].

ρ(x, t2) = U(t2, t1)ρ(x, t1)

The family of evolution operators have the following properties:

lim
t2→t1

U(t2, t1) = I t2 ! t1

U(t2, t1) = U(t3, t2)U(t2, t1) t3 ! t2 ! t1

lim
t3→t2

U(t3, t1) = U(t2, t1) t2 ! t1

Here, I is the identity operator. The operators U can be written as integral
operators of the form

ρ(x, t2) = U(t2, t1)ρ(x, t1)

=
∫

P(x, t2|x′, t1) ρ(x′, t1) dx′ t2 ! t1 .

For a Markovian process the propagators (or integral kernels)
P(x, t2|x′, t1) are the transition probability distribution densities. They
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have the following properties:

lim
t2→t1

P(x, t2|x′, t1) = δ(x− x′)

P(x, t3|x′′, t1) =
∫

P(x, t3|x′, t2)P(x′′, t2|x′, t1)dx′

We assume that statistical mechanics correctly describes the equilib-
rium behavior of the system. It follows that for an unperturbed system the
propagator must preserve the appropriate equilibrium distribution.

ρ(x|β,E) =
∫

P(x, t|x′, t′)ρ(x′|β,E)dx′

The energy of the system is a function of both time and space, E(x, t).
The perturbation of the system is assumed to occur at a discrete set of
times. Thus the energy of each state is constant for a finite length of time
before making an instantaneous jump to a new value. This is in contrast to
a continuous time, discrete space Markov chain, where the energies could
change continuously but the state transitions were discrete. The jump times
are labeled t0, t1, · · · , tJ such that tj < tj+1. t0 = 0 and tJ = τ .

E

t1 t2 t3

Note that the energies are right continuous; E(x′, s) = E(x′, tj) for tj "
s < tj+1.

The probability density of the path x(t), given the set of evolution
operators U is

P[x(t)|U] =
J-1∏

j=0

P(x, tj+1|x, tj)

The time reversal of this dynamics can be defined in an analogues
way to that used for a Markov chain. An equilibrium ensemble should be
unaffected by a time reversal, and the probability of a transition should be
the same as the probability of the reverse transition in the reverse dynamics.

ρ(x̂, τ−t|β,E) P̂(x̂, τ−t′|x̂, τ−t) = ρ(x, t|β,E)P(x, t|x, t′)

For the forward process the equilibrium probabilities are determined
by the state energy at the beginning of an interval between transitions since
the energies are right continuous. In the reverse process the order of the
energy transitions is reversed, Ê(x, τ−t) = E(x, t), and the state energies
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become left continuous. Thus the stationary distributions of the reverse
process are determined by the state energies at the end of an interval.

With these subtleties in mind the derivation of microscopic reversibility
follows as it did for Markov chains. We start with the probability of the
forward path and apply the time reversal operation to the constant state
energy trajectory segments.

P[x(t)|x(0),U] =
J-1∏

j=0

P(x, tj+1|x, tj)

=
J-1∏

j=0

P(x̂, tj+1|x̂, tj)
ρ(x(tj)|β,E(tj))

ρ(x(tj+1)|β,E(tj))

= P̂[x̂(t)|x̂(0), Û] exp
{

−βQ[x]
}

In this derivation, it was assumed that the state energies only changed
in discrete steps. The generalization to continuously varying energies can
be accomplished by letting the time between steps go to zero. However, we
need the additional assumption that the energies are piecewise continuous.

1.5 Multiple baths with variable tempera-
tures

So far we have only considered systems coupled to a single isothermal
heat bath. However, it is often useful to consider nonequilibrium systems
coupled to multiple heat baths of different temperatures (e.g., heat engines
[52]) or to a bath whose temperature changes with time (e.g., simulated
annealing [53] ). The ensembles of equilibrium statistical mechanics suggest
coupling systems to more general types of reservoirs with different intensive
variables, either constant pressure baths (isothermal-isobaric ensemble) or
constant chemical potential baths (grand canonical ensemble). Other, more
exotic baths are possible, at least in principle.

The microscopic reversibility symmetry that has been derived for a
single isothermal bath can be extended to these more general situations in a
very straightforward manner. First note that if an amount of energy Q flows
out of a bath of inverse temperature β then the entropy change of the bath
is ∆Sbath = −βQ. This follows because the bath is a large thermodynamic
system in equilibrium. Accordingly, we can rewrite microscopic reversibility
as

P[x|x(0),U]
P̂[x̂|x̂(0), Û]

= exp
{

∆Sbaths

}
. (1.12)

This expression suffices to cover all the situations discussed above if we
interpret ∆Sbaths as the total change in entropy of all the baths attached
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to the system. First, consider the situation when the system is coupled to
an extra bath, which acts as a reservoir of an extensive quantity other than
energy. As an example, consider a classical gas confined in a diathermal
cylinder by a movable piston. We suppose that the piston is attached to a
large spring which exerts a constant force that tries to compress the gas.
The far side of the piston therefore acts as an isobaric volume reservoir.

As before, we can consider that this perturbation occurs in a num-
ber of discrete steps. Once again, we can derive the relation between the
probability of a path segment between steps, and the probability of the cor-
responding time reversed path segment from the equilibrium distribution,
ρ(x) ∝ exp{−βEx + βpV };

P(x, t|x, t′)
P̂(x̂, τ−t′|x̂, τ−t)

=
ρ(x, t |β,βp,E)
ρ(x̂, t′|β,βp,E)

= exp
{
−βQ− βp∆V

}
. (1.13)

This probability ratio continues to hold when many path segments
are strung together to form the complete path. In this expression ∆V is
the change in volume of the system measured along the forward path, and
p is the pressure of the external isobaric volume reservoir. This change
in volume can be considered a baric equivalent of the thermal heat [36].
Therefore, −βp∆V is the change in entropy of the isobaric bath and micro-
scopic reversibility can indeed be written as the total change in entropy of
all the attached baths. Other isothermal ensembles of statistical mechanics
can be treated in a similar manner.

This expression is not directly applicable to the isobaric ensemble as
normally implemented in a computer simulation [54]. In the example above,
the volume change was accomplished by a piston. In a computer simula-
tion a volume change is normally implemented by uniformly shrinking or
swelling the entire system. (This is consistent with periodic boundary con-
ditions.) However, microscopic reversibility can be recovered by adding an
additional term, −N ln∆V , to the change in entropy of the baths. This
term can be interpreted as the change in configurational entropy of an N
particle system that is uniformly expanded or shrunk by ∆V .

Systems that are coupled to multiple heat baths can be treated in a
similar manner. However, these systems are inherently out of equilibrium,
and therefore there is no simple expression for the stationary state prob-
ability distribution. This problem can be circumvented by insisting that
the connections of the heat baths to the system are clearly segregated, so
that the system only exchanges energy with one bath during any time step.
One possibility for implementing this restriction is allow the coupling to
change at each time step, so that only one bath is coupled at a time. (This
is equivalent to rapidly changing the temperature of the bath. See below.)
Another possibility is to couple separate parts of the system to different
heat baths. For example in an Ising model evolving according to single
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spin flip dynamics each spin could be coupled to its own heat bath [55].
With this restriction to unambiguous coupling we can treat micro-

scopic reversibility as before. The time reversed dynamics can be found by
considering the equilibrium ratio of the two states that the system transi-
tioned between at the temperature of the heat bath with which the system
exchanged energy during that transition.

Finally, consider the situation where the temperature of the heat bath
changes with time. We require that this temperature change occurs in
a number of discrete steps which occur at the same time points that the
perturbations of the system occur. Indeed, it is possible to view this change
as an additional perturbation that exerts a sort of “entropic work” on the
system. During every stochastic step the temperature is constant, and
therefore the forward/reverse path probability ratios are given in terms of
the temperature of the bath at that time step. Therefore, the change in
entropy of the bath that is featured in the microscopic reversibility above
should be interpreted as the change in entropy due to the exchange of
energy with the bath, and not as the change in entropy of the bath due to
the change in temperature.

It should also be noted that Eq. (1.12) is also applicable to micro-
canonical ensembles, systems not coupled to any baths. Then ∆Sbaths = 0
and the probabilities of the forward and corresponding reverse path are
identical.

1.6 Langevin dynamics

We have considered microscopic reversibility only in generality. How-
ever, it is useful to consider specific examples. Recently Jarzynski [17]
exhibited a derivation of microscopic reversibility for Hamiltonian systems
coupled to multiple heat baths. In this section I would like to consider a
specific stochastic dynamics that has been widely used to model nonequi-
librium systems.

The state of a system evolving according to Langevin’s equations of
motion [56, 57] is determined by the positions, q, and momenta, p, of a
collection of particles. Langevin dynamics can then be written as

q̇ =
p
m

, ṗ = F(q,λ)− γp + ξ(t) . (1.14)

Here, m is the mass of the particle, F is the position dependent force (pa-
rameterized by the potentially time dependent variable λ), γp is a frictional
drag force proportional to the velocity, and ξ(t) is a rapidly varying random
force due to the coupling of the system to the many degrees of freedom of
the environment. Normally, ξ is taken to be δ correlated Gaussian white
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noise with zero mean,.

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 =
2mγ

β
δt

If the frictional force is large (the high friction limit) then the inertial
parts of the dynamics become irrelevant, and Langevin’s equation simplifies
to

ẋ = βD F (x,λ) + ξ(t),

where x is a generic phase coordinate vector (q ≡ x), and D is the diffusion
coefficient, which is related to γ by Einstein’s’ relation D = mγ/β. Another
common parameterization is to set ε = 2D = 2/β. Then ẋ = F (x,λ)+ξ(t).
We will use this convention in Chapter 6.

Here we will explicitly demonstrate microscopic reversibility for
Langevin dynamics in the high friction limit. We require that the non-
random force on the system is the gradient of a potential energy F (x,λ) =
−∂E(x,λ)/∂x. (This condition is not strictly necessary, but without it the
interpretation of microscopic reversibility in terms of the heat flow becomes
problematic.) As the kinetic energy is zero this is the total energy of the
system. The total change in internal energy, ∆E, can split into two parts.

∆E =
∫

dE =
∫ (

∂E

∂λ

)

x

dλ

dt
dt

︸ ︷︷ ︸
Work, W

+
∫ (

∂E

∂x

)

λ

dx

dt
dt

︸ ︷︷ ︸
Heat, Q

(1.15)

The first term on the right is the work, the change in internal energy due to
a change in the control parameter, λ. By the first law of thermodynamics
the second term is the heat.

The probability of observing a trajectory through phase space x(t),
given x(0), is given by [58,59]

P[x(+t)|λ(+t)] ∝ exp

{
−
∫ +τ

−τ

(
ẋ + βDF (x,λ)

)2

4D
+ D∇·F dt

}
.

For convenience we have taken the time interval to be t ∈ [−τ, +τ). By
making the change of variables t→ −t (the Jacobian is unity) we find the
probability of the time reversed path.

P[x(−t)|λ(−t)] ∝ exp
{
−
∫ +τ

−τ

(−ẋ + βDF (x,λ))2

4D
+ D∇·F dt

}
.

The probability ratio for these two trajectories is

P[x(+t)|λ(+t)]
P[x(−t)|λ(−t)]

= exp
{
−β

∫ +τ

−τ
ẋF (x,λ) dt

}
. (1.16)
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The integral is the heat as defined by Eq. (1.15), thus demonstrating mi-
croscopic reversibility for the dynamics of a system evolving according to
the high friction Langevin equation in a gradient force field. It is also pos-
sible to show that systems evolving according to the Langevin equation in
a time dependent field are microscopically reversible by showing that the
dynamics are detailed balanced for infinitesimal time steps [24].

The Langevin equation has another curious and suggestive property,
one that may imply useful relations that would not hold true for a general
stochastic dynamics. The probability of a Langevin trajectory (high or low
friction) can be written as [60,61,24]

P[x, x(0)] =
e−βUp[x]

Z , (1.17)

where Up[x] is a temperature independent “path energy”, and Z is a path
independent normalization constant. The similarity to equilibrium statisti-
cal mechanics is striking. Because we have shown that Langevin trajectories
are microscopically reversible it follows that

Up[x]− Up[x̂] = βQ[x] .

It is possible to impose this path energy structure on a discrete time, dis-
crete space dynamics. However, the necessary conditions appear unrealistic.
Suppose that the single time step transition probabilities could be written
in the form of Eq. (1.17).

P(i→ i′) =
e−βUp(i,i′)

Z where Z =
∑

i′

e−βUp(i,i′) .

The normalization constant Z must be path independent, and therefore
independent of i. This can only be true for arbitrary β if the set of path
energies is the same for each and every initial state. This implies that

P (i→ i′) = P (i→ j′) for all i, j and some i′, j′ .

For a discrete system this condition seems overly restrictive. It would be
very difficult (if not impossible) to implement a dynamics with this prop-
erty for the discrete lattice models, such as the Ising model, that are so
popular in equilibrium statistical mechanics. Nonetheless, this assumption
that the dynamics of a discrete lattice system can be written in this form
(occasionally referred to as a Gibbs measure [62]) has been used to derive a
version of the Gallavotti-Cohen fluctuation theorem. [12,16, and see Chap-
ter 3] As we shall see this theorem can derived from the much more general
condition that the dynamics are microscopically reversible.
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1.7 Summary

If a system is coupled to a collection of thermodynamic baths, and the
dynamics of the system are Markovian and balanced, and the energy of the
system is always finite, then the dynamics are microscopically reversible.

P[x|x(0)]
P̂[x̂|x̂(0)]

= exp
{

∆Sbaths

}
(1.18)

Here, P[x|x(0)] is the probability of the trajectory x, given that the system
started in state x(0), P̂[x̂|x̂(0)] is the probability of the time reversed tra-
jectory, with the time reversed dynamics, and ∆Sbaths is the total change
in entropy of the baths attached to the system, measured along the forward
trajectory.

For the special, but common, case of a system coupled to a single
isothermal bath this expression becomes

P[x|x(0)]
P̂[x̂|x̂(0)]

= exp
{

+βQ[x]
}

(1.19)

where Q is the heat exchanged with the bath along the forward trajectory.



21

2. Path Ensemble Averages

One of the principle objects of theoretical research in any de-
partment of knowledge is to find the point of view from which
the subject appears in its greatest simplicity.

— J. W. Gibbs

2.1 Introduction

If a system is gently driven from equilibrium by a small time-dependent
perturbation, then the response of the system to the perturbation can
be described by linear response theory. On the other hand, if the sys-
tem is driven far from equilibrium by a large perturbation then linear re-
sponse, and other near-equilibrium approximations, are generally not ap-
plicable. However, there are a few relations that describe the statistical
dynamics of driven systems which are valid even if the system is driven
far from equilibrium. These include the Jarzynski nonequilibrium work
relation [34, 63, 64, 35], which gives equilibrium free energy differences in
terms of nonequilibrium measurements of the work required to switch from
one ensemble to another; the Kawasaki relation [65, 66, 67, 68, 69], which
specifies the nonlinear response of a classical system to an arbitrarily large
perturbation; and the Evans-Searles transient fluctuation theorem [2, 5]
which provides information about the entropy production of driven sys-
tems that are initially in equilibrium. This last theorem is one of a group
that can be collectively called the “entropy production fluctuation theo-
rems” [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], which will be considered
in greater detail in Chapter 3. (In particular, the Gallavotti-Cohen [3, 4]
differs from the Evans-Searles identity is several important respects, and
will not be considered in this chapter.)

The relations listed above have been derived for a wide range of de-
terministic and stochastic dynamics. However, the various expressions and
applicable dynamics have several commonalities: the system starts in ther-
mal equilibrium, it is driven from that equilibrium by an external pertur-
bation, the energy of the system always remains finite, the dynamics are
Markovian, and if the system is unperturbed then the dynamics preserve
the equilibrium ensemble. It should be clear from the previous chapter that
a system with these properties is microscopically reversible (1.10). It will
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be shown that this property is a sufficient condition for the validity of all
the far-from-equilibrium expressions mentioned above. Indeed, they can all
be considered special cases of a single theorem:

〈
F
〉
F

=
〈
F̂ e−βWd

〉
R
. (2.1)

Here, 〈F〉F indicates the average of the path function F . Path functions
(such as the heat and work) are functionals of the trajectory that the system
takes through phase-space. An average of a path function is implicitly an
average over a suitably defined ensemble of paths. In this chapter, the path
ensemble is defined by the initial thermal equilibrium and the process by
which the system is subsequently perturbed from that equilibrium. The left
side of the above relation is simply F averaged over the ensemble of paths
generated by this process. We arbitrarily label this the forward process
(subscript ‘F’).

For every such process that perturbs the system from equilibrium we
can imagine a corresponding reverse perturbation (subscript ‘R’). We shall
construct this process by insisting that it too starts from equilibrium, and
by considering a formal time reversal of the dynamics. The right side of
Eq. (2.1) is F̂ , the time reversal of F , averaged over the reverse process, and
weighted by the exponential of βWd. Here β = 1/kBT , T is the temperature
of the heat bath, kB is Boltzmann’s constant, and Wd is the dissipative
work. The dissipative work is a path function and is defined as Wd =
W −Wr, where W is the total work done on the system by the external
perturbation and Wr is the reversible work, the minimum average amount
of work required to perturb the system from its initial to its final ensemble.

In summary, Eq. (2.1) states that an average taken over an ensemble
of paths, which is generated by perturbing a system that is initially in
equilibrium, can be equated with the average of another, closely related
quantity, averaged over a path ensemble generated by the reverse process.
This relation is valid for systems driven arbitrarily far from equilibrium, and
several other far-from-equilibrium relations can be derived from it. In the
next section I show that the relation between path ensemble averages (2.1)
is an almost trivial identity given that the dynamics are microscopically
reversible. A variety of special cases are introduced, many of which will be
dealt with in much greater detail in subsequent chapters.

2.2 Path ensemble averages

Consider the following situation; A system that is initially in thermal
equilibrium is driven away from that equilibrium by an external perturba-
tion, and the path function F [x] is averaged over the resulting nonequilib-
rium ensemble of paths. The probability of a trajectory is determined by
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the equilibrium probability of the initial state, and by the vector of tran-
sition matrices that determine the dynamics. Therefore, the average of F
over the ensemble of trajectories can be explicitly written as

〈
F
〉
F

=
∑

x

ρ
(
x(0)

∣∣β,E(0)
)
P[x |x(0),M]F [x] .

The sum is over the set of all paths connecting all possible initial and final
states. ∑

x

=
∑

x(0)

∑

x(1)

∑

x(2)

· · ·
∑

x(τ)

(2.2)

If the system has a continuous phase space then the above sum can be
written as the path integral

〈
F
〉
F

=
∫∫∫ x(τ)

x(0)
ρ
(
x(0)

∣∣β,E(0)
)
P[x |x(0),U]F [x]D[x]dx(0)dx(τ) . (2.3)

The additional integrals are over all initial and final states, since the stan-
dard path integral has fixed boundary points. For simplicity, only the
discrete system will be explicitly considered. However, the derivation im-
mediately generalizes to continuous systems.

Given that the system is microscopically reversible it is a simple matter
to convert the above expression to an average over the reverse process. We
first note that

ρ
(
x(0)

∣∣β,E(0)
)
P[x|x(0),M]

ρ
(
x̂(0)

∣∣β, Ê(0)
)
P̂[x̂|x̂(0), M̂]

= e+β∆E−β∆F−βQ[x],

= e+βW[x]−β∆F ,

= e+βWd[x]. (2.4)

The first line follows from the condition of microscopic reversibility (1.10),
and the definition of the canonical ensemble (1.1). Recall that ∆E =
E(τ)x(τ) − E(0)x(0) (1.6) is the change in energy of the system measured
along the forward trajectory, that ∆F is the reversible work of the forward
process, and that Wd[x] is the dissipative work. The set of reverse trajec-
tories is the same as the set of forward trajectories, and the time reversal
of the path function is F [x] = F̂ [x̂].

Therefore,

〈
F
〉
F

=
∑

x̂
ρ
(
x̂(0)

∣∣β, Ê(0)
)
P̂[ x̂ | M̂ ] F̂ [x̂] e−βWd[x̂]

=
〈
F̂ e−βWd

〉
R

.
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It is frequently convenient to rewrite Eq. (2.1) as
〈
F e−βWd

〉
F

=
〈
F̂
〉
R
, (2.5)

where F has been replaced with F e−βWd , and F̂ with F̂ e+βWd .

2.2.1 Jarzynski nonequilibrium work relations

A variety of previously known relations can be considered special cases
of, or approximations to this nonequilibrium path ensemble average. In the
simplest case we start with Eq. (2.5), and then set F = F̂ = 1 (or any
other constant of the dynamics). Then

〈
e−βWd

〉
F

=
〈
1
〉
R

= 1. (2.6)

The right side is unity due to normalization of probability distributions.
This relation contains only one path ensemble average. Therefore, it is no
longer necessary to distinguish between forward and reverse perturbations
and the remaining subscript, “F”, is superfluous. The dissipative work,
Wd can replaced by W −∆F , and the change in free energy can be moved
outside the average since it is path independent. The result is the Jarzynski
nonequilibrium work relation [34,63,70,64,35,13].

〈e−βW〉 = e−β∆F (2.7)

This relation states that if we convert one system into another by changing
the energies of all the states from an initial set of values to a final set of
values over some finite length of time, then the change in the free energies
of the corresponding equilibrium ensembles can be calculated by repeating
the switching process many times, each time starting with an initial state
drawn from an equilibrium ensemble, and taking the above average of the
amount of work required to effect the change. In the limit of instantaneous
switching between ensembles, (we change the energies of all the states in
a single instantaneous jump) this relation is equivalent to the standard
thermodynamic perturbation method that is frequently used to calculate
free energy differences by computer simulation [71].

It is possible to extend Eq. (2.7) to a more general class of relations
between the work and the free energy change [72]. Suppose that F = f(W)
where f(W) is any finite function of the work. Then F̂ = f(−W), because
the work is odd under a time reversal. Inserting these definitions into
Eq. (2.1) and rearranging gives

e−β∆F =
〈
f(+W)

〉
F〈

f(−W) e−βW
〉
R

(2.8)
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Recall that ∆F is defined in terms of the forward process. Further appli-
cations and approximations of these nonequilibrium work relations can be
found in Chapter 4.

2.2.2 Transient fluctuation theorem

Another interesting application of the path ensemble average is to
consider F = δ(βWd−βWd[x]), F̂ = δ(βWd+βWd[x̂]). Substituting into
Eq. (2.1) gives

〈
δ(βWd−βWd[x]) e−βWd

〉
F

=
〈
δ(βWd+βWd[x̂])

〉
R

,

or PF(+βWd) e−βWd = PR(−βWd) .

Here, PF(+βWd) is the probability of expending the specified amount of
dissipative work in the forward process, and PR(−βWd) is the probability
of expending the negative of that amount of work in the reverse process. If
PR(−βWd) )= 0 then we can rearrange this expression as

PF(+βWd)
PR(−βWd)

= e+βWd . (2.9)

Equation (2.9) can be considered as follows. The system of interest
starts in equilibrium and is perturbed for a finite amount of time. If it
is allowed to relax back to equilibrium then the change in entropy of the
heat bath will be −βQ, and the change in entropy of the system will be
β∆E−β∆F . Therefore, the total change in entropy of the universe result-
ing from the perturbation of the system is −βQ+β∆E−β∆F = βW−β∆F =
βWd, the dissipative work. Thus Eq. (2.9) can be interpreted as an entropy
production fluctuation theorem. It relates the distribution of entropy pro-
ductions of a driven system that is initially in equilibrium to the entropy
production of the same system driven in reverse. As such it is closely re-
lated to the transient fluctuation theorems of Evans and Searles [2,5]. The
connection between this fluctuation theorem, the Jarzynski nonequilibrium
work relation and microscopic reversibility was originally presented in [13].

2.2.3 Kawasaki response and nonequilibrium distribu-
tions

All of the relations in Sec. 2.2.1 and Sec. 2.2.2 were derived from
Eq. (2.1) by inserting a function of the work. Another group of relations
can be derived by instead considering F to be a function of the state of the
system at some time. In particular, if we average a function of the final
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state in the forward process, F = f
(
x(τ)

)
, then we average a function of

the initial state in the reverse process, F̂ = f
(
x̂(0)

)
:

〈
f
(
x(τ)

)
e−βWd

〉
F

=
〈
f
(
x̂(0)

)〉
R

.

Therefore, in the reverse process the average is over the initial equilibrium
ensemble of the system, and the subsequent dynamics are irrelevant. We
can once more drop reference to forward or reverse processes, and instead
use labels to indicate equilibrium and nonequilibrium averages:

〈
f
(
x(τ)

)
e−βWd

〉
neq

=
〈
f
(
x(τ)

)〉
eq

. (2.10)

This relation (also due to Jarzynski [72]) states that the average of a state
function in a nonequilibrium ensemble, weighted by the dissipative work,
can be equated with an equilibrium average of the same quantity.

Another interesting relation results if we insert the same state functions
into the alternative form of the path ensemble average, Eq. (2.5): (This is
ultimately equivalent to interchanging F and F̂ .)

〈
f
(
x(τ)

)〉
F

=
〈
f
(
x̂(0)

)
e−βWd

〉
R

. (2.11)

This is the Kawasaki nonlinear response relation [65,66,67,68,69], ap-
plied to stochastic dynamics, and generalized to arbitrary forcing. This
relation can also be written in an explicitly renormalized form [68] by ex-
panding the dissipative work as −∆F + W, and rewriting the free energy
change as a work average using the Jarzynski relation, Eq. (2.7).

〈
f
(
x(τ)

)〉
F

=
〈
f
(
x̂(0)

)
e−βW〉

R

/〈
e−βW〉

R
(2.12)

Simulation data indicates that averages calculated with the renormalized
expression typically have lower statistical errors [68].

The probability distribution of a nonequilibrium ensemble can be de-
rived from the Kawasaki relation, Eq. (2.12), by setting the state function
to be F = f(x(τ)) = δ

(
x − x(τ)

)
, a δ function of the state of the system

at time τ ;

ρneq

(
x, τ |M

)
= ρ
(
x
∣∣β,E(τ)

)
〈
e−βW〉

R,x〈
e−βW

〉
R

. (2.13)

Here ρneq

(
x, τ |M

)
is the nonequilibrium probability distribution and

ρ
(
x
∣∣β,E(τ)

)
is the equilibrium probability of the same state. The sub-

script ‘x’ indicates that the average is over all paths that start in state x.
In contrast, the lower average is over all paths starting from an equilibrium
ensemble. Thus the nonequilibrium probability of a state is, to zeroth or-
der, the equilibrium probability, and the correction factor can be related to
a nonequilibrium average of the work.
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2.3 Summary

All of the relations derived in this chapter are directly applicable to
systems driven far-from-equilibrium. These relations follow if the dynamics
are microscopically reversible in the sense of Eq. (1.10), and this relation
was shown to hold if the dynamics are Markovian and balanced. Although
I have concentrated on stochastic dynamics with discrete time and phase
space, this should not be taken as a fundamental limitation. The extension
to continuous phase space and time appears straightforward, and determin-
istic dynamics can be taken as a special case of stochastic dynamics.

In the following chapters many of these same relations will be consid-
ered in greater depth, and various useful approximations will be considered,
some of which are only applicable near equilibrium.
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3. The Fluctuation Theorem(s)

I have yet to see any problem, however complicated, which when
you looked at it in the right way, did not become still more com-
plicated.

— Paul Alderson∗

3.1 Introduction

The fluctuation theorems [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
18, 19] are a group of relations that describe the entropy production of a
finite classical system coupled to a constant temperature heat bath, that is
driven out of equilibrium by a time dependent work process. Although the
type of system, range of applicability, and exact interpretation differ, these
theorems have the same general form,

P(+σ)
P(−σ)

, eτσ. (3.1)

Here P(+σ) is the probability of observing an entropy production rate,
σ, measured over a trajectory of time τ . Evans and Searles [2] gave a
derivation for driven thermostatted deterministic systems that are initially
in equilibrium (this result is referred to either as the transient fluctuation
theorem, or as the Evans-Searles identity), Gallavotti and Cohen [3] rig-
orously derived their fluctuation theorem for thermostatted deterministic
steady state ensembles, and Kurchan [9], Lebowitz and Spohn [11], and
Maes [12] have considered systems with stochastic dynamics. The exact
interrelation between these results is currently under debate [14,15].

In this chapter I will derive the following, somewhat generalized, ver-
sion of this theorem for stochastic microscopically reversible dynamics:

PF(+ω)
PR(−ω)

= e+ω. (3.2)

Here ω is the entropy production of the driven system measured over some
time interval, PF(ω) is the probability distribution of this entropy produc-
tion, and PR(ω) is the probability distribution of the entropy production

∗New Scientist 25 Sept 1969, p. 638
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when the system is driven in a time-reversed manner. This distinction is
necessary because we will consider systems driven by a time-dependent pro-
cess, rather than the steady perturbation considered elsewhere. The use of
an entropy production, rather than an entropy production rate, will prove
convenient.

As a concrete example of a system for which the above theorem is valid,
consider a classical gas confined in the cylinder by a movable piston. The
walls of this cylinder are diathermal so that the gas is in thermal contact
with the surroundings, which therefore act as the constant temperature
heat bath. The gas is initially in equilibrium with a fixed piston. The
piston is then moved inwards at a uniform rate, compressing the gas to
some new, smaller volume. In the corresponding time reversed process,
the gas starts in equilibrium at the final volume of the forward process,
and is then expanded back to the original volume at the same rate that
it was compressed by the forward process. The microscopic dynamics of
the system will differ for each repetition of this process, as will the entropy
production, the heat transfer and the work performed on the system. The
probability distribution of the entropy production is measured over the
ensemble of repetitions.

In the following section we will derive the entropy production fluctu-
ation theorem, Eq. (3.2). Then in Sec. 3.3 we will discuss two distinct
groups of driven systems for which the theorem is valid. In the first group,
systems start in equilibrium, and are then actively perturbed away from
equilibrium for a finite amount of time. In the second group, systems are
driven into a time symmetric nonequilibrium steady state. We conclude by
discussing several approximations that are valid when the entropy produc-
tion is measured over long time periods. The fluctuation theorem and its
approximations are illustrated with data from a simple computer model.

3.2 The fluctuation theorem

In contrast to the previous chapter, we no longer restrict attention to
systems that start in equilibrium. A particular work process is defined by
the initial phase-space distribution, ρ

(
x(0)

)
, and by the time dependent

dynamics†, U. Each individual realization of this process is characterized
by the path that the system follows through phase space, x(t). The entropy
production, ω, must be a functional of this path. Clearly there is a change
in entropy due to the exchange of energy with the bath. If Q is the amount
of energy that flows out of the bath and into the system, then the entropy of
the bath must change by −βQ. There is also a change in entropy associated

†In order to be consistent with the bulk of the fluctuation theorem literature, the
emphasis in this chapter is on systems with a continuous time dynamics and a continuous
phase space.
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with the change in the microscopic state of the system. From an information
theoretic [20] perspective, the entropy of a microscopic state of a system,
s(x) = − ln ρ(x), is the amount of information required to describe that
state given that the state occurs with probability ρ(x). The entropy of this
(possibly nonequilibrium) ensemble of systems is S = −

∑
x ρ(x) ln ρ(x).

Thus, for a single realization of a process that takes some initial probability
distribution, ρ(x(0)), and changes it to some different final distribution,
ρ(x(τ)), the entropy production‡ is

ω = ln ρ
(
x(τ)

)
− ln ρ

(
x(0)

)
− βQ[x(t)]. (3.3)

This is the change in the amount of information required to describe the
microscopic state of the system plus the change in entropy of the bath.

Recall that the fluctuation theorem, Eq. (3.2), compares the entropy
production probability distribution of a process with the entropy produc-
tion distribution of the corresponding time-reversed process. For example,
with the confined gas we compare the entropy production when the gas is
compressed to the entropy production when the gas is expanded. To allow
this comparison of forward and reverse processes we will require that the
entropy production is odd under a time reversal (i.e., ωF = −ωR) for the
process under consideration. This condition is equivalent to requiring that
the final distribution of the forward process, ρ(x(τ)), is the same (after a
time reversal) as the initial phase-space distribution of the reverse process,
ρ(x̂(0)), and vice versa, i.e., ρ(x(τ)) = ρ(x̂(0)) and ρ(x(0)) = ρ(x̂(τ)). In
the next section, we will discuss two broad types of work process that ful-
fill this condition. Either the system begins in equilibrium or the system
begins and ends in the same time symmetric nonequilibrium steady state.

This time-reversal symmetry of the entropy production allows the com-
parison of the probability of a particular path, x(t), starting from some spe-
cific point in the initial distribution, with the corresponding time-reversed
path,

ρ(x(0))P[x(t)|x(0),U]
ρ(x̂(0)) P̂[x̂(t)|x̂(0), Û]

= e+ωF . (3.4)

This follows from the conditions that the system is microscopically re-
versible (1.10) and that the entropy production is odd under a time reversal.

Now consider the probability, PF(ω), of observing a particular value of
this entropy production. It can be written as a δ function averaged over
the ensemble of forward paths,

PF(ω) =
〈
δ(ω−ωF)

〉
F

‡This definition of the entropy production is equivalent to the quantityΣ used by
Jarzynski [63]
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=
∫∫∫ x(τ)

x(0)

ρ(x(0))P[x(t)|x(0),U]δ(ω−ωF)D[x(t)]dx(0)dx(τ).

Here
∫∫∫ x(τ)

x(0) · · · D[x(t)]dx(0)dx(τ) indicates a sum or suitable normalized in-
tegral over all paths through phase space, and all initial and final phase
space points, over the appropriate time interval. We can now use Eq. (3.4)
to convert this average over forward paths into an average over reverse
paths.

PF(ω) =
∫∫∫ x(τ)

x(0)

ρ(x̂(0))P[x̂(t)|x̂(0), Û]δ(ω−ωF) e+ωF D[x(t)]dx(0)dx(τ)

= e+ω

∫∫∫ x̂(τ)

x̂(0)

ρ(x̂(0))P[x̂(t)|x̂(0), Û] δ(ω+ωR)D[x̂(t)]dx̂(0)dx̂(τ)

= e+ω
〈
δ(ω+ωR)

〉
R

= e+ω PR(−ω)

The remaining average is over reverse paths as the system is driven in
reverse. The final result is the entropy production fluctuation theorem,
Eq. (3.2).

The fluctuation theorem readily generalizes to other ensembles. As
an example, consider an isothermal-isobaric system. In addition to the
heat bath, the system is coupled to a volume bath, characterized by βp,
where p is the pressure. Both baths are considered to be large, equilibrium,
thermodynamic systems. Therefore, the change in entropy of the heat bath
is −βQ and the change in entropy of the volume bath is −βp∆V , where
∆V is the change in volume of the system. The entropy production should
then be defined as

ω = ln ρ(x(0))− ln ρ(x(τ))− βQ− βp∆V, (3.5)

and microscopic reversibility should be defined as in Eq. (1.13). The fluc-
tuation theorem, Eq. (3.2), follows as before. It is possible to extend the
fluctuation theorem to any standard set of baths, so long as the definitions
of microscopic reversibility and the entropy production are consistent. In
the rest of this chapter we shall only explicitly deal with systems coupled
to a single heat bath, but the results generalize directly.

3.3 Two groups of applicable systems

In this section we will discuss two groups of systems for which the
entropy fluctuation theorem, Eq. (3.2), is valid. These systems must satisfy
the condition that the entropy production, Eq. (3.3), is odd under a time
reversal, and therefore that ρ(x(0)) = ρ(x̂(τ)).
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First consider a system that is in equilibrium from time t = −∞ to
t = 0. It is then driven from equilibrium by an external perturbation of
the system. The system is actively perturbed up to a time t = τ , and
is then allowed to relax, so that it once again reaches equilibrium at t =
+∞. For the forward process the system starts in the equilibrium ensemble
specified by E(−∞), and ends in the ensemble specified by E(+∞). In
the reverse process, the initial and final ensembles are exchanged, and the
entropy production is odd under this time reversal. The gas confined in the
diathermal cylinder (page 3) satisfies these conditions if the piston moves
only for a finite amount of time.

At first it may appear disadvantageous that the entropy production
has been defined between equilibrium ensembles separated by an infinite
amount of time. However, for these systems the entropy production has
a simple and direct interpretation. The probability distributions of the
initial and final ensembles are known from equilibrium statistical mechanics
(1.1). If these probabilities are substituted into the definition of the entropy
production, Eq. (3.3), then we find that

ωF = −β∆F + βW = βWd. (3.6)

Recall that W is the work, ∆F is the change in free energy, and Wd is
the dissipative work. (See page 7) It is therefore possible to express the
fluctuation theorem in terms of the amount of work performed on a system
that starts in equilibrium [73],

PF(+βW)
PR(−βW)

= e−∆F e+βW = e+βWd . (3.7)

The work in this expression is measured over the finite time that the system
is actively perturbed.

The validity of this expression can be illustrated with the simple com-
puter model described in Fig. 3.1. Although not of immediate physical
relevance, this model has the advantage that the entropy production dis-
tributions of this driven nonequilibrium system can be calculated exactly,
apart from numerical roundoff error. The resulting work distributions are
shown in Fig. 3.2. Because the process is time symmetric, ∆F = 0 and
P(+βW) = P(−βW) exp βW. This expression is exact for each of the dis-
tributions shown, even for short times when the distributions display very
erratic behavior.

Systems that start and end in equilibrium are not the only ones that
satisfy the fluctuation theorem. Consider again the classical gas confined in
a diathermal cylinder. If the piston is driven in a time symmetric periodic
manner (for example, the displacement of the piston is a sinusoidal function
of time), the system will eventually settle into a nonequilibrium steady-state
ensemble. We will now require that the dynamics are entirely diffusive, so
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Figure 3.1: A simple Metropolis Monte Carlo simulation is used to illus-
trate the fluctuation theorem and some of its approximations. The master
equation for this system can be solved, providing exact numerical results
to compare with the theory. A single particle occupies a finite number of
positions in a one-dimensional box with periodic boundaries, and is cou-
pled to a heat bath of temperature T = 5. The energy surface, E(x),
is indicated by in the figure. At each discrete time step the particle
attempts to move left, right, or remain in the same location with equal
probabilities. The move is accepted with the standard Metropolis accep-
tance probability [74]. Every eight time steps, the energy surface moves
right one position. Thus the system is driven away from equilibrium, and
eventually settles into a time symmetric nonequilibrium steady-state. The
equilibrium (◦) and steady state (•) probability distributions are shown in
the figure above. The steady state distribution is shown in the reference
frame of the surface.
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Figure 3.2: Work probability distribution (—) for the system of Fig. 3.1,
starting from equilibrium. The work W was measured over 16, 32, 64, 128,
and 256 cycles (∆t = 128, 256, 512, 1024, and 2048). For each of these
distributions the work fluctuation theorem, Eq. (3.7), is exact. The dashed
line (- - -) is a Gaussian fitted to the mean of the ∆t = 256 distribution.
(See Sec. 3.4).

that there are no momenta. Then at any time that the dynamics are time
symmetric the entire system is invariant to a time-reversal. We start from
the appropriate nonequilibrium steady-state, at a time symmetric point of
the perturbation, and propagate forward in time a whole number of cycles.
The corresponding time reversed process is then identical to the forward
process, with both starting and ending in the same steady state ensemble.
The entropy production for this system is odd under a time reversal and
the fluctuation theorem is valid.

As a second example, consider a fluid under a constant shear [1]. The
fluid is contained between parallel walls which move relative to one another.
Eventually the system settles into a nonequilibrium steady state. A time
reversal of this steady-state ensemble will reverse all the velocities, including
the velocity of the walls. The resulting ensemble is related to the original
one by a simple reflection, and is therefore effectively invariant to the time
reversal. Again, the forward process is identical to the reverse process, and
the entropy production is odd under a time reversal.

In general, consider a system driven by a time symmetric, periodic pro-
cess. We require that the resulting nonequilibrium steady-state ensemble be
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Figure 3.3: Heat probability distribution (—) for the nonequilibrium steady
state. The model described in Fig. 3.1 was relaxed to the steady state, and
the heat Q was then measured over 16, 32, 64, 128 and 256 cycles (∆t =
128, 256, 512, 1024, and 2048). Note that for long times the system forgets
its initial state and the heat distribution is almost indistinguishable from
the work distribution of the system that starts in equilibrium.

invariant under time reversal. This symmetry ensures that the the forward
and reverse process are essentially indistinguishable, and therefore that the
entropy production is odd under a time reversal. It is no longer necessary
to explicitly label forward and reverse processes. PF(ω) = PR(ω) = P(ω).
For these time symmetric steady-state ensembles the fluctuation theorem
is valid for any integer number of cycles, and can be expressed as

P(+ω)
P(−ω)

= e+ω. (3.8)

For a system under a constant perturbation (such as the sheared fluid) this
relation is valid for any finite time interval.

3.4 Long time approximations

The steady-state fluctuation theorem, Eq. (3.8), is formally exact for
any integer number of cycles, but is of little practical use because, unlike the
equilibrium case, we have no simple method for calculating the probability



36 The Fluctuation Theorem(s) 3.

0.85

1.00

1.15

0 8 16 24 32

r
Δt = 512

Δt = 256

Δt = 128

Δt = 1024

Δt = 2048

βQ

Figure 3.4: Deviations from the heat fluctuation theorem, Eq. (3.10), for the
distributions of Fig. 3.3. If the heat fluctuation theorem were exact, then
the ratio r = βQ/ ln[P(+βQ)/ P(−βQ)] would equal 1 for all |βQ|. For
short times (∆t " 256) the fluctuation theorem is wholly inaccurate. For
times significantly longer than the relaxation time of the system (∆t ≈ 100),
the fluctuation theorem is accurate except for very large values of |βQ|.

of a state in a nonequilibrium ensemble. The entropy production is not an
easily measured quantity. However, we can make a useful approximation for
these nonequilibrium systems which is valid when the entropy production
is measured over long time intervals.

We first note that whenever Eq. (3.2) is valid, the following useful
relation holds [8, Eq. (16)]:

〈e−ω〉 =
∫ +∞

−∞
PF(+ω)e−ωdω =

∫ +∞

−∞
PR(−ω)dω

= 1. (3.9)

From this identity, and the inequality 〈expx〉 ! exp〈x〉 (which follows from
the convexity of ex) we can conclude that 〈ω〉 ! 0. On average the entropy
production is positive. Because the system begins and ends in the same
probability distribution, the average entropy production depends only on
the average amount of heat transferred to the bath. −〈ω〉 = 〈βQ〉 " 0. On
average, over each cycle, energy is transferred through the system and into
the heat bath (This is the Clausius inequality). The total heat transferred
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Figure 3.5: Work distribution (—) and Gaussian approximation (- - -)
for ∆t =2048, with the probabilities plotted on a logarithmic scale. The
Gaussian is fitted to the mean of the distribution and has a variance half
the mean (see Sec. 3.4). This Gaussian approximation is very accurate,
even to the very wings of the distribution, for times much longer than the
relaxation time (∆t ≈ 100) of the system. This same distribution is shown
on a linear scale in Fig. 3.2.

tends to increase with each successive cycle. When measurements are made
over many cycles, the entropy production will be dominated by this heat
transfer and ω ≈ −βQ. Therefore, in the long time limit the steady state
fluctuation theorem, Eq. (3.8), can be approximated as

lim
∆t→∞

P(+βQ)
P(−βQ)

= exp(βQ). (3.10)

Because −βQ is the change in entropy of the bath, this heat fluctuation
theorem simply ignores the relatively small, and difficult to measure micro-
scopic entropy of the system.

Heat distributions for the simple computer model of a nonequilibrium
steady state are shown in Fig. 3.3, and the validity of the above approx-
imation is shown in Fig. 3.4. As expected, the heat fluctuation theorem,
Eq. (3.10), is accurate for times much longer than the relaxation time of
the system.

Another approximation to the entropy production probability distri-
bution can be made in this long time limit. For long times the entropy
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production ω is the sum of many weakly correlated values and its distri-
bution should be approximately Gaussian by the central limit theorem. If
the driving process is time symmetric, then PF(ω) = PR(ω) = P(ω), and the
entropy production distribution is further constrained by the fluctuation
theorem itself. The only Gaussians that satisfy the fluctuation theorem
have a variance twice the mean, 2〈ω〉 =

〈
(ω − 〈ω〉)2

〉
. This is a version

of the standard fluctuation-dissipation relation [75]. The mean entropy
production (dissipation) is related to the fluctuations in the entropy pro-
duction. If these distributions are Gaussian, then the fluctuation theorem
implies the Green-Kubo relations for transport coefficients [1,68,76]. How-
ever, we have not used the standard assumption that the system is close
to equilibrium. Instead, we have assumed that the system is driven by a
time symmetric process, and that the entropy production is measured over
a long time period.

Gaussian approximations are shown in Figs. 3.2 and 3.5 for the work
distribution of the simple computer model. For times much longer than the
relaxation time of the system these approximations are very accurate, even
in the wings of the distributions. This is presumably due to the symmetry
imposed by the fluctuation theorem. For a nonsymmetric driving process,
this symmetry is broken, and the distributions will not necessarily satisfy
the fluctuation-dissipation relation in the long time limit. For example, see
Fig. 8 of Ref. [63] and Fig 4.2. Clearly these distributions will be poorly
approximated by the Gaussian distributions considered here.

3.5 Summary

The fluctuation theorem, Eq. (3.2), appears to be very general. In
this Chapter we have derived a version that is exact for finite time in-
tervals, and which depends on the following assumptions: the system is
finite and classical, and coupled to a set of baths, each characterized by a
constant intensive parameter. The dynamics are required to be microscop-
ically reversible (1.10) and the entropy production, defined by Eq. (3.3),
must be odd under a time reversal. This final condition was shown to hold
for two broad classes of systems, those that start in equilibrium and those
in a time symmetric nonequilibrium steady state. For the latter systems
the fluctuation theorem holds for entropy productions measured over any
integer number of cycles. This generality suggests that other nontrivial
consequences of the fluctuation theorem are awaiting study.
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4. Free Energies From Nonequilibrium
Work Measurements

We obtain the equation
∫ dQ

T = S − S0 which, while somewhat
differently arranged, is the same as that which was formerly used
to determine S. — R. Clausius [77]

4.1 Introduction

Free energies and entropies are of primary importance both in thermo-
dynamics and statistical mechanics. It is therefore somewhat unfortunate
that these quantities cannot be directly measured in a computer simula-
tion [79]. For a quantity such as the energy it is sufficient to take an aver-
age over a small representative sample of states, but for the entropy (and
therefore free energy) it is necessary to consider all the states accessible to
the system, the number of which is normally very large.

This is also a problem for experiments on physical systems. There is
no such thing as an entropy meter. Fortunately, thermodynamics provides
a method for calculating entropy changes. Indeed, entropy was originally
defined in terms of this procedure [77, 44]. Consider a classical system
in contact with a constant temperature heat bath where some degree of
freedom of the system can be controlled. (For a concrete example refer to
the confined gas discussed on page 3.) Let λ be a parameter specifying
the current value of this controllable degree of freedom. We wish to know
the entropy change as this parameter is switched from some initial (λi) to
some final (λf) value. If this transformation is carried out infinitely slowly,
and is therefore reversible (since the system is always in equilibrium), then
Clausius’ theorem states that

∆S = Sf − Si = β

∫ λf

λi

dQ = βQr , (4.1)

where ∆S is the entropy change of the system, and Qr is the heat flow
associated with this reversible transformation. Note that β is the inverse
temperature of the heat bath. For a reversible transformation the temper-
ature of the system and bath are identical.
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A similar expression for the free energy change can be obtained from
Clausius’ theorem by subtracting β∆E from both sides of the expression
above;

∆S − β∆E = βQr − β∆E ,

β∆F = βWr . (4.2)

Since this is a thermodynamic description, E should be interpreted as the
average energy of the equilibrium system. Incidentally, this relation justifies
the identification of the free energy change with the reversible work (page
7).

The application of the Clausius theorem to simulations provides a sim-
ple algorithm, thermodynamic integration, for calculating free energy differ-
ences. There are two, slightly different implementations. In a slow growth
simulation the controllable parameter is switched from the initial to final
values very slowly. The hope is that the system remains in equilibrium
(to a good approximation) throughout, so that the work done during this
transformation is (approximately) the free energy difference. This method
is referred to a “slow growth”, since it has frequently been used to calculate
chemical potentials by slowly growing an additional particle in a simula-
tion. The chemical potential is related to the free energy change of this
process [80,81].

Alternatively (4.2) can be rewritten as

∆F =
∫ λf

λi

〈
∂E

∂λ

〉

λ

dλ . (4.3)

Here, 〈· · ·〉λ indicates an average over an equilibrium ensemble with fixed λ.
The partial derivative is the work done on the system due to an infinitesimal
change in λ. In practice, the average is evaluated for a series of closely
spaced equilibrium simulations, and the integral is approximated by a sum.
This variant is referred to as staged thermodynamic integration, or simply
as thermodynamic integration.

Another common algorithm for calculating free energy differences in
simulations is thermodynamic perturbation [82,71];

〈
e−β∆E

〉
λi

= e−β∆F . (4.4)

Again, 〈· · ·〉λ indicates an equilibrium average with the specified value of
λ. The energy difference, ∆E = E(λf)x − E(λi)x, is the change in energy
of a state induced by an instantaneous change in the control parameter
from λi to λf . This relation can be validated by expanding the equilibrium
probability as ρ(x) = exp{βF − βEx} (1.1).

〈
e−β∆E

〉
λi

=
∑

x

ρ(x|β,E) exp
{
−β∆E

}
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=
∑

x

exp
{
βF (λi)− βE(λi)x − βE(λf)x + βE(λi)x

}

= exp
{
−βF (λi)

}∑

x

exp
{
−βE(λf)

}

= e−β∆F (4.5)

Although free energy perturbation is exact in principle, in practice it
is only accurate (given finite computational resources) if the change in en-
ergies are, on average, small. Then the final ensemble can be considered a
small perturbation of the initial ensemble. If the initial and final ensem-
bles are very different, then the total change in the controllable parameter
can be broken down into a series of smaller changes. In this staged free
energy perturbation method the above average is evaluated in a series of
equilibrium simulations, each separated by a small change in λ [79, 83,71].

Entropy and free energy calculations are inherently computationally
expensive. For this reason there has been a large amount of work directed
at optimizing these methods [79,84]. These efforts are complicated, because
these methods all suffer from both statistical and systematic error, which
arise because not only because of finite sample sizes, but also because the
simulations are never truly in equilibrium.

4.2 Jarzynski nonequilibrium work relation

Christopher Jarzynski [34] has recently derived an interesting nonequi-
librium relation that contains both thermodynamic perturbation and ther-
modynamic integration as limiting cases. This relation was originally de-
rived for a Hamiltonian system weakly coupled to a heat bath [34], and
for Langevin dynamics [34], and was soon generalized to detailed balanced
stochastic systems [63,35]. It is now clear that this relation is a simple and
direct consequence of microscopic reversibility (1.10) [18]. We begin with a
system in thermal equilibrium with fixed λi. This controllable parameter
is then switched to its final value, λf , over some finite length of time. The
work done on this system due to this switching process is averaged over the
resulting nonequilibrium ensemble of paths.

〈e−βW〉 = e−β∆F (4.6)

Recall that an average of a path function indicates an average over a
nonequilibrium path ensemble. Contrast this relation with the conven-
tional methods considered above. Thermodynamic integration corresponds
to an infinitely slow change in λ, and thermodynamic perturbation to an
infinitely fast change in λ.
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This nonequilibrium relation was briefly mentioned in Sec. (2.2.1), and
shown to be a special case of the path ensemble average (2.1). It is instruc-
tive to consider the explicit derivation of this relation from microscopic
reversibility (1.10).

〈e−βW〉 =
∑

x

ρ
(
x(0)

∣∣β,E(0)
)
P[x|x(0),M] e−βW[x]

=
∑

x

ρ
(
x̂(0)

∣∣β, Ê(0)
)
P̂[x̂|x̂(0), M̂] e−β∆F+βW[x]e−βW[x]

= e−β∆F

The second line follows from Eq. (2.4), which is itself a direct consequence
of microscopic reversibility.

Another useful point of view is to consider the Jarzynski nonequilib-
rium work relation a direct consequence of the transient fluctuation theo-
rem (2.9) [13]. The sum over paths then becomes a simple integral over
work.

〈e−βW〉 =
∫ +∞

−∞
PF(+W)e−WdW = e−β∆F

∫ +∞

−∞
PR(−W)dW

= e−β∆F . (4.7)

This relation is essentially identical to Eq. (3.9), 〈e−ω〉 = 1, because for
a system that starts in equilibrium the entropy production ω is Wd, the
dissipative work (3.6).

There are a number of situations that can cause a naive application
of Eq. (4.6) to fail. For example, consider the system illustrated below∗.
A gas is confined to one half of a box by a thin, movable barrier, and is
initially in thermal equilibrium (a).

(a) (b)

At some point in time the barrier is removed, and the gas is allowed to
expand into the other half of the system. Instead of removing the barrier
entirely, we could instead open a series of vents, creating holes through
which the gas may pass. In either case the equilibrium free energy of the
system has changed, yet removing the barrier requires no work, and this

∗This particular failure was pointed out by Prof. D. Rokhsar.
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free energy change cannot be calculated from (4.6). However, the Jarzynski
nonequilibrium work relation is inapplicable because the system was not
truly in equilibrium at the beginning of this process. Although the gas was
locally in equilibrium, the system was not ergodic, and therefore not in the
relevant global equilibrium. Had the system initially been in the global
equilibrium state (gas evenly distributed on either side of the barrier) then
the free energy change would have been zero, in agreement with the work
done on the system. A similar failure can occurs whenever the perturbation
of the system effectively changes the accesible phase space.

Several interesting relations can be considered near equilibrium ap-
proximations of Eq. (4.6). The average of the exponential work can be
expanded as a sum of cumulants [85],

〈
ecz
〉

= exp

{ ∞∑

n=1

cnκn

n!
,

}
(4.8)

Here, κn is the nth cumulant average of z. The higher order cumulants
represent fluctuations in the work. Hence, for a very slow, almost re-
versible switching process the free energy can be well approximated by
the first term of this expansion, which is −β〈W〉. In this manner we obtain
thermodynamic integration (4.3) as the infinite switching time limit of the
nonequilibrium work relation.

Alternatively, if the first two terms of the cumulant expansion are
retained (which should be a good approximation if the work probability
distribution is approximately Gaussian) then we obtain a version of the
fluctuation-dissipation ratio [75].

β∆F ≈ β〈W〉 − β2σ2
W

2

or βWd ≈ β2σ2
W

2
(4.9)

Here, 〈W〉 is the mean work (the first cumulant) and σ2
W is the variance of

the work (the second moment.) Referring to the final line, we see that the
dissipative work (effectively the entropy production (3.6)) is related to the
fluctuations in the work. [See also Fig. (4.3)]

In the limit of infinitely fast switching the nonequilibrium work ex-
pression becomes equivalent to thermodynamic perturbation (4.5), since
the work becomes simply ∆E, the energy change induced by an instanta-
neous change in λ. Free energy perturbation can also be used to calculate
the equilibrium properties of one ensemble from an equilibrium simulation
of the other [71]. A very similar relation can now be derived for nonequi-
librium processes (2.10).

〈f〉λf =
〈f(x(τ))e−βW〉
〈e−βW〉 (4.10)
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In this relation f(x(τ)) is a function of the state of the system at time
τ . The average on the left is over the equilibrium ensemble with the final
value of the control parameter. The averages on the right are over the
nonequilibrium procedure that switches λ from the initial to final values.

〈f(x(τ))e−βW〉
〈e−βW〉 = 〈f(x(τ))e−βWd〉

=
∑

x

ρ
(
x(0)

∣∣β,E(0)
)
P[x|x(0),M] f(x(τ))e−βWd

=
∑

x

ρ
(
x̂(0)

∣∣β, Ê(0)
)
P̂[x̂|x̂(0), M̂] f(x̂(0))

=
∑

x

ρ
(
x̂(0)

∣∣β, Ê(0)
)
f(x̂(0))

= 〈f〉λf .

Thus equilibrium averages can be found by weighting the quantity of in-
terest by a function of the work done on the system. It is also possible to
extract the equilibrium probabilities from this nonequilibrium process by
the same method. The function f is replaced by a delta function.

ρ(x′|β,E(τ)) =
〈δ(x′ − x(τ))e−βW〉

〈e−βW〉 (4.11)

Any equilibrium probability can be related to a function of the work per-
formed on the system, averaged over all paths that end in the desired state.

4.3 Optimal computation time

The nonequilibrium work relation (4.6) interpolates smoothly between
thermodynamic integration and thermodynamic perturbation. This raises
the following interesting question: given a simulation of a switching pro-
cess, and finite computational resources, which procedure provides the best
estimate of the free energy difference? Is it better to use scarce computer
time to take many samples of a fast switching process, or only a few samples
of a longer and slower perturbation? This question can easily be answered
in the limit of large switching time and large sample size.

Suppose that we have made n independent measurements of the
amount of work required to switch ensembles over some time ∆t. Using
the nonequilibrium work relation gives the following estimate of the free
energy difference;

β∆Fest = − ln
1
n

n∑

i=1

e−βwi . (4.12)



4.3. Optimal computation time 45

1 64
0

256

512

0.00

0.05

0.10

x

E(x) ρ(x)
8kBT

Initial ρ(x)

Final ρ(x)

Initial E(x)

Final E(x)

Figure 4.1: A Metropolis Monte Carlo simulation was used to study a
simple switching process. The dynamics and implementation are essential
the same as those used in the previous Chapter. [See Fig. (3.1) for more
details.] A free energy calculation was simulated using a system with the
time dependent state energies E(x) = 08xt/∆t1. Here, x is the state of the
system at time t and ∆t is the total switching time. At t = 0 all energies
are zero. During the switching process the slope of this surface gradually
increases, resulting in an expenditure of some amount of work. The initial
and final state energies ( ) are indicated in the figure. The system is coupled
to a heat bath of temperature T = 64, so that the difference between the
lowest and highest energy levels is 8kBT . The initial (◦) and final (•)
equilibrium probability distributions, ρ(x), are also shown in this figure.
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Figure 4.2: Work probability distribution (—) for the system of Fig. 4.1,
starting from equilibrium. The state energies were switched from the initial
to final values over 256, 1024, 4096, 16384, and 65536 Monte Carlo time
steps. The free entropy difference for this process is β∆F ≈ 2.14096. Note
that in the large switching time limit the work distribution are approxi-
mately Gaussians, and are centered around β∆F .

Here the wi’s are the individual, independent measurements of the work.
The mean bias of this estimate is

〈bias〉 = 〈β∆Fest − β∆F 〉 , (4.13)

and the mean squared error is

α = 〈(β∆Fest − β∆F )2〉 . (4.14)

This quantity is sometimes written as σ2
β∆Fest

, which is, at best, misleading.
The mean squared error is not the variance of β∆Fest, since the mean of
β∆Fest is not β∆F , unless the estimate is unbiased.

The bias and mean squared error can be related using the following
identity:

〈e−bias〉 = 〈e−β∆Fest+β∆F 〉
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Figure 4.3: The mean dissipative work and the variance of the work versus
switching time, plotted on a logarithmic scale. Note that for long switching
time βWd ≈ 〈(βW − 〈βW〉)2〉/2, and that both these quantities scale as
1/∆t.

= 〈 1
n

n∑

i=1

e−βwi〉e+β∆F

= 1 . (4.15)

It immediately follows that the bias is always positive for any finite number
of samples (since 〈exp{−x}〉 ! exp〈x〉). For long switching times the bias
will be small, and the exponential in (4.15) can be expanded as a Taylor
series. Retaining only the first few terms, we may conclude that the bias is
approximately twice the mean squared error in this limit, i.e., 〈bias〉 ≈ α/2.

The mean squared error can also be explicitly written as

α =

〈(
ln

1
n

∑n
i=1 e−βwi

〈e−βW〉

)2〉
(4.16)

In the limit of large sample sizes, or large switching times, the argument
of the logarithm is approximately unity, and we can use the approximation
that lnx ≈ x− 1.

α ≈ 1
n

〈(
e−βWd − 〈e−βWd〉

)2〉
(4.17)

This can be further simplified by once more taking the long switching time
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limit, and using a truncated Taylor series expansion of the exponentials.

α ≈ 1
n

〈
(βW − 〈βW〉)2

〉
(4.18)

If the switching time is much longer than the correlation time of the system,
then the work done on the system is the sum of many weakly correlated
values. It follows that, in this limit, the probability distributions of the
work are approximately Gaussian [see Fig. (4.2)], and that the variance of
the work scales inversely with the switching time, ∆t [see Fig. (4.3)]. The
combination of these results gives the following chain of approximations.

〈bias〉 ≈ α

2
≈ 1

n

〈
(βW − 〈βW〉)2

〉
∼ 1

n∆t
∼ 1

T (4.19)

Here T is the total simulation time, which is approximately n∆t for large
∆t.

We are therefore led to the following conclusion; in the large sample,
large switching time limit both the systematic and statistical errors scale
inversely with the simulation time. It does not matter whether the compu-
tation time is used to generate many samples, or fewer samples of longer
processes. However, large sample sizes allow a more accurate estimation of
the error in the calculation, and are therefore preferable, all other things
being equal.

4.4 Bennett acceptance ratio method

It is possible to extend the Jarzynski nonequilibrium work relation
Eq. (4.6) to a more general class of equalities between the work and the
free energy change [See Sec (2.2.1)]. If f(W) is any finite function of the
work then the path ensemble average (2.1) predicts that

e−β∆F =
〈f(+W)〉F

〈f(−W)e−βW〉R
(4.20)

Recall that ∆F is defined in terms of the forward process. This equa-
tion clearly contains the Jarzynski relation as a special case. (f(W) =
exp{−βW})

Suppose that we have made nF independent measurements of the
amount of work required to switch ensembles using the forward process,
and nR independent measurements from the reverse process. An interest-
ing question is what choice of f(W) leads to the highest statistical accu-
racy for ∆F? For instantaneous switching this question was answered by
Bennett [79, 71, 84] in his derivation of the acceptance ratio method for
calculating free energy differences. Bennett’s methods and results can be
readily adapted to finite switching times.
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Given a finite number of samples then the mean squared error is

α =
〈
(β∆Fest − β∆F )2

〉

=

〈(
ln

1
nF

∑nF
i=1f(+wi)

〈f(+W)〉F
− ln

1
nR

∑nR
j=1 f(−w′

j) e−βw′
j

〈f(−W) e−βW〉R

)2〉

Here the wi’s are the individual measurements of the work from the forward
process and the w′

j ’s are the measurements from the reverse process. This
expression is difficult to evaluate. However in the limit of large sample
size the arguments of the logarithms approach 1, so that we may use the
approximation that lnx ≈ x− 1. Applying this approximation, expanding
the square and evaluating the cross terms (recall that all the wi and w′

j ’s
are statistical independent) we obtain

α ≈
〈
f(+W)2

〉
F
−
〈
f(+W)

〉2
F

nF

〈
f(+W)

〉2
F

+
〈
f(−W)2 e−2βW〉

R
−
〈
f(−W) e−βW〉2

R

nR

〈
f(−W) e−βW

〉2
R

The path ensemble average (2.1) can be used to convert all averages taken
over the reverse process to averages over the forward process.

〈f(−W) e−βW〉R = e+β∆F 〈f(+W)〉F
〈f(−W)2 e−2βW〉R = 〈f(+W)2 e+β∆F+βW〉F

In addition we may arbitrarily choose the normalization of the function f
such that,

〈f(+W)〉F = k , (4.21)

where k is a constant. Making these substitutions we obtain

α ≈ 〈f(+W)2〉F
k2 nF

+
e−β∆F 〈f(+W)2 e+βW〉F

k2 nR
− 1

nF
− 1

nR

≈
∫ +∞

−∞
PF(W)

1
k2

[
f(+W)2

nF
+

f(+W)2 e−β∆F+βW

nR

]
dW − 1

nF
− 1

nR

We wish to minimize the mean squared error, α, with respect to the
function f , with the constraint Eq. (4.21). This can easily be accomplished
by introducing a Lagrange undetermined multiplier, λ.

0 = PF(W)
1
k2

( 1
nF

+
e−β∆F−βW

nR

)
f(W) δf(W)− λPF(W) δf(W)

The constant k can be conveniently set to 1/
√

λ. The least error then
occurs if the function f is set to

f(W) = (1 + exp{−βW − C})−1
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where C is −β∆F + lnnF/nR.
Inserting this function into Eq. (4.20), we obtain the following optimal

estimate for the free energy difference;

e−β∆F =
〈
(1 + exp{+βW + C})−1

〉
F

〈(1 + exp{+βW − C})−1〉R
exp{−C} . (4.22)

The optimal choice of the constant C is −β∆F + lnnF/nR. Because C
appears on both sides of this relation it must be solved self-consistently.

The nonequilibrium free energy calculations studied in this Chapter
provide an interesting set of alternatives to the more conventional meth-
ods for calculating free energy differences. However, it has yet to be seen
whether these methods are significantly more efficient in practice.
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5. Response Theory

Clouds are not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightning travel in
a straight line.

— Benoit B. Mandelbrot [86]

5.1 Introduction

The response of a many particle classical system to an external time-
dependent perturbation is generally a complex, often nonanalytic function
of the strength of the perturbation. Fortunately, for many relevant systems
the response is a linear function of the strength of the perturbation. This
observation is the basis of linear response theory, which has its simplest,
quantitative expression in the fluctuation-dissipation theorem∗;

〈
A(τ)

〉
neq
−
〈
A
〉
eq
≈ βλ

[〈
A(0)B(τ)

〉
eq
−
〈
A
〉
eq

〈
B
〉
eq

]
(5.1)

Here, β is the inverse temperature of the environment, A and B are state
functions of the system, and λ is a parameter that controls the strength
of the perturbation. This perturbation is due to a field that couples to
the variable B so that the energy of the system is changed by −λB. (For
an Ising model λ could be the strength of the external magnet field, and
B the net magnetization.) The system is prepared in an equilibrium en-
semble with a finite λ. At time t = 0 the field is discontinuously and
instantaneously switched off (λ is set to zero). The equilibrium averages
correspond to λ = 0, and 〈A(τ)〉neq is the nonequilibrium average of A at a
time τ after the perturbation. This fluctuation-dissipation theorem relates
equilibrium fluctuations (the time correlation function on the right in the
expression above) to the relaxation of the system towards equilibrium from
a nonequilibrium state. On this simple foundation the entire Green-Kubo
linear response theory [87,88,89,90,50] can be built.

Although linear response is useful and widely applicable, it does have
its limitations. For example, Skaf and Ladanyi recently studied a charge
transfer reaction in a simple fluid and found significant deviations from

∗Some scientists reserve the terminology “fluctuation-dissipation theorem” for a re-
lationship that is equivalent . . . but somewhat different in appearance—D. Chandler [49,
p. 255]
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the fluctuation-dissipation theorem [91]. In addition, there are situations
where the lowest order term is not linear (such as hydrodynamic is 2 di-
mension [92]) and others where higher order terms diverge [93]. For a fuller
discussion of these issues see the introduction to [67].

5.2 Kawasaki response and the nonlinear
fluctuation-dissipation theorem

Despite the difficulties associated with linear response, it is possible
to write nontrivial expressions valid far-from-equilibrium, which reduce to
linear response in the appropriate limit. Kubo [89] himself gave a relation
for the nonlinear response, expressed as a sum of convolution of opera-
tors. It does not appear to have been used with any success. A more
practical expression was developed by Yamada and Kawasaki [65], which
gives the response of a adiabatic Hamiltonian system to an instantaneous
perturbation. This relation has subsequently been generalized to deter-
ministic, thermostatted dynamics with arbitrary time dependent pertur-
bations [66, 67, 68, 69], using the same systems and similar reasoning used
to derive the fluctuation theorem (3.2). From the relations developed ear-
lier it is now possible to derive an extension of the Kawasaki response
to thermostatted systems with stochastic dynamics. Also working from
the fluctuation theorem, Kurchan derived what is effectively a nonlinear
fluctuation-dissipation theorem for stochastic dynamics [9]. We will see
that this can be derived as a special case of the Kawasaki response.

The average of the state function A, measured over a nonequilibrium
ensemble generated by an arbitrary time dependent perturbation, can be
written as

〈
A(τ)

〉
F

=
∑

x

ρ
(
x(0)

∣∣β,E(0)
)
P[x|x(0),M]A(τ) . (5.2)

In anticipation of the manipulations to come, I have added the subscript
“F” as a reminder that this average is over the forward perturbation. Note
that the system is initially in equilibrium. As usual, I will assume the mi-
croscopic reversibility (1.10) ( P[x|x(0),M] = P̂[ x̂|x̂(0), M̂] exp{−βQ[x]})
of the underlying dynamics. Using this property the nonequilibrium aver-
age of A can be related to another average, taken over the same system
driven in the “reverse” direction (2.4):

〈
A(τ)

〉
F

=
∑

x

ρ
(
x̂(0)

∣∣β, Ê(0)
)
P̂[x̂|x̂(0), M̂]A(0) e−βWd[x̂]

=
〈
A(0) e−βWd

〉
R

. (5.3)
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Recall that Wd is the dissipative work. It will prove advantageous to expand
the dissipative work as −∆F +W, and rewriting the free energy change as
a work average using the Jarzynski relation (2.7);

〈
A(τ)

〉
F

=
〈
A(0) e−βW〉

R

/〈
e−βW〉

R
. (5.4)

Equation 5.3 is referred to as the bare form, and Eq. (5.4) as the renormal-
ized form of the Kawasaki response. Simulation data indicates that averages
calculated with the renormalized expression typically have lower statistical
errors [68]. The expressions above differ from the standard Kawasaki forms
in three important respects: The response is explicitly defined in terms
of the work, it is generalized to arbitrary forcing, and it incorporates an
average over all possible trajectories, which is necessitated by the exten-
sion to stochastic dynamics. This relation can also be considered a simple
application of the path ensemble average (1.10) with F [x(t)] = A(τ). See
Sec. 2.2.3.

Let us now consider a more restrictive situation, the kind of pertur-
bation envisaged in the derivation of linear response. A system begins in
equilibrium with a perturbation that changes the energy of the system by
−λB(0), where B is a state function and λ a parameter. At time 0 this
perturbation is removed (λ is set to zero), and the state of the system is
observed at time τ . In the reverse perturbation the system is in equilibrium
with λ = 0 up to time τ . The perturbation is then switched on changing
the energy by −λB(τ). This is the only work done on the system. Further-
more, this is a purely equilibrium average, effectively a time correlation
function between A at time 0 and e+βλB at time time τ . This can be
made more evident by subtracting

〈
A
〉
eq

from both sides of the Kawasaki
relation. Therefore, with these replacements and changes, the Kawasaki re-
sponse (5.4) for a single, instantaneous change to the system can be written
as

〈
A(τ)

〉
neq
−
〈
A
〉
eq

=

〈
A(0) e+βλB(τ)

〉
eq
−
〈
A
〉
eq

〈
e+βλB

〉
eq〈

e+βλB
〉
eq

. (5.5)

This expression is a nonlinear fluctuation-dissipation theorem valid for ar-
bitrary strong perturbations. It is effectively equivalent to that derived by
Kurchan [9, Eq. (3.27)]. The standard, linear, fluctuation dissipation theo-
rem (5.1) can be obtained as an approximation by expanding in powers of
λ, and retaining only the lowest order terms.

5.3 Nonequilibrium probability distributions

The probability distribution of a nonequilibrium ensemble is not de-
termined solely by the external constraints, but explicitly depends on the
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history and dynamics of the system. A particular nonequilibrium ensem-
ble can be generated by starting with an equilibrium system, and per-
turbing the system away from equilibrium in some predetermined man-
ner. An expression for this nonequilibrium probability distribution can
derived from the Kawasaki relation (5.4) by setting the state function to
be A(τ) = δ

(
x− x(τ)

)
, a δ function of the state of the system at time τ ;

ρneq

(
x, τ

∣∣M
)

= ρ
(
x
∣∣ β,E(τ)

)
〈
e−βW〉

R,x〈
e−βW

〉
R

. (5.6)

Here, ρ
(
x, τ |M

)
is the nonequilibrium probability distribution and

ρ
(
x
∣∣β,E(τ)

)
is the equilibrium probability of the same state. The sub-

script ‘x’ indicates that the average is over all paths that start in state x.
In contrast the lower average is over all paths starting from an equilibrium
ensemble. Thus, the nonequilibrium probability of a state is, to zeroth or-
der, the equilibrium probability, and the correction factor can be related to
a nonequilibrium average of the work.

This relation for the nonequilibrium probability should be compared
with the nonequilibrium relation for equilibrium probabilities, Eq. (4.11),
that was derived in the previous chapter. The two expressions are very
similar. To obtain nonequilibrium probabilities it is necessary to associate
the work with the initial state, whereas for equilibrium probabilities it was
necessary to correlate the work with the final state.

A particular type of nonequilibrium ensemble can be generated by ap-
plying a continuous, periodic perturbation to the system. Eventually the
system may relax (if the corresponding transition matrix is aperiodic and
irreducible [39]) into a steady-state that is determined solely by this pertur-
bation, and not by the initial state. The sheared fluid discussed on page 34
provides a useful example. However, the relaxation of the system into this
nonequilibrium steady state requires an infinite amount of time, just as it
requires infinite time to fully equilibrate a system. During this time the av-
erage work done on the system increases with each subsequent cycle (3.9),
and becomes infinite in the infinite time limit that we are most interested
in. Fortunately, due to the formal renormalization of the Kawasaki relation
(5.4) it is possible to reexpress Eq. (5.6) in terms of finite quantities. Both
the upper and lower average can be expanded as a sum of cumulants (see
page 4.8);

ρneq

(
x, τ

∣∣M
)

= ρ
(
x
∣∣ β,E(τ)

)
exp

{ ∞∑

n=1

(−β)n

n!
(
κx

n(W)− κeq
n (W)

)
}

.

(5.7)
Here, κn(W) is the nth cumulant average of the work done on the system,
and the superscripts distinguish averages for a system starting in state x
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and those starting from an equilibrium ensemble. Cumulants of all orders
are additive for independent random variables. Since trajectory segments
separated in time are weakly correlated, it follows that all the cumulants
in the average above are either identically zero, or scale linearly with time.
However, the phase space distribution tends to the steady state distribution
exponentially fast [39], irrespective of the initial state. It follows that each
difference of cumulants in the sum above is finite, and converges to its long
time limit exponentially fast.

To proceed further it is necessary to develop useful approximations.
The first cumulant is the mean of the work, and the second is the variance.
If the fluctuations in the work are relatively small, then it seems plausible
that the right side of Eq. (5.7) could be well approximated by the first term
of the cumulant expansion.

ρneq

(
x, τ

∣∣M
)
≈ ρ
(
x
∣∣ β,E(τ)

)
e−β
(
〈W〉x−〈W〉eq

)
(5.8)

Here, 〈W〉x is the average amount of work done on the system if it starts in
state x, and 〈W〉eq is the average amount of work if the system started from
an equilibrium ensemble. Comparison with similar expressions that have
been derived for thermodynamic fluctuations [94, 95, 96, 97] suggest that
this expression may be accurate for two distinct types of systems; either
the system is close to equilibrium or the dynamics are almost deterministic.
In the latter case the system could be far-from-equilibrium, but the ran-
domness is, at worst, a small perturbation to the deterministic dynamics.
Essentially, this is the approach used by Evans and Morris in Ref. [67], and
several related papers. A driven, thermostatted system is modeled with
Hamiltonian dynamics incorporating a Gaussian constraint. This provides
a thermostatted, yet completely deterministic dynamics. Then Eq. (5.8)
would be exact. (However, there are several pitfalls and technical difficul-
ties associated with these deterministic dynamics, including a fractal phase
space measure in the steady state.) The accuracy for a simple stochastic
system is shown in Fig. (5.1).

An expression for the nonequilibrium entropy can be derived from this
expression by substituting the explicit canonical expression (1.1) for the
equilibrium probability, and using the definition S = −

∑
x ρx ln ρx.

Sneq ≈ −βF + β〈E〉neq − β〈Wex〉 (5.9)

Here, F is the equilibrium free energy of the system, and 〈Wex〉 is the mean
excess work, the difference in the mean work done on a system that starts
in the nonequilibrium steady state, and the mean work done on the system
if it starts in the equilibrium ensemble. By subtracting the equilibrium
entropy, Seq = −βF + β〈E〉eq we obtain an intriguing approximation;

Sneq − Seq ≈ β〈E〉neq − β〈E〉eq − β〈Wex〉 ≈ β〈Qex〉 . (5.10)
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Figure 5.1: The exact relation, Eq. (5.6), and near equilibrium approxi-
mations, Eq. (5.8), for the steady state probability distribution were tested
against the sawtooth system studied in Ch. (3). The nonequilibrium steady
state probability distribution (•) was calculated by propagating the system
forward in time until the probabilities converged. The work distributions for
the system starting from each state were calculated for a time much longer
than the relaxation time of the system. Probabilities were calculated from
these distributions using both Eqs. (5.6) and (5.8). As expected, the first
gave results almost indistinguishable from the true steady state probabili-
ties. Small errors were largely due to the finite time that each system was
perturbed, and partial due to numerical roundoff error. Unfortunately, this
procedure is completely impractical for a real system. The near equilibrium
approximation, Eq. (5.8), gave surprisingly accurate results (+). (Compare
with the equilibrium probability distribution in Fig. (3.1) ) The distribu-
tion is qualitatively correct, with about 10% error. Interestingly, utilizing
the next term in the cumulant expansion, Eq. (5.7), did not significantly
improve the accuracy.
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The mean excess heat, 〈Qex〉, is defined in an analogues manner to the
excess work. This expression bears a striking resemblance to the Clausius
relation (4.1) for equilibrium entropy differences, and appears to be very
closely related to the work of Oono and Paniconi [98], who define an excess
heat in a very similar manner, and suggest a steady state thermodynamic
entropy that is compatible with this expression.

5.4 Miscellaneous comments

There are several other far-from-equilibrium relations that have been
derived from, or are related to the Kawasaki response. The transient time
correlation function (TTCF) [99, 100, 101, 102, 103] gives another set of re-
lations for the nonlinear response of a system, which maybe of greater
practical utility [67] than the Kawasaki response relation. Unfortunately
it appears that TTCF can not be applied to the systems considered here,
since a crucial step linking the two formalisms [67] makes the assumption
that the dynamics are deterministic, and therefore that only an average
over initial conditions is needed. Similarly Evans and Morriss have de-
rived several interesting relations for the heat capacity of a nonequilibrium
steady-state [67], but again these relations are not generally applicable be-
cause it is assumed that the probability of a trajectory is independent of
the temperature of the heat bath.

The Kawasaki relation itself has not proved particular useful in prac-
tice. However, its chief utility may be to suggest approximations, other
than linear response, that provide interesting perspectives, and that are
(potentially) of practical utility. The steady-state entropy (5.10) may rep-
resent one such relation, but it is not presently clear how accurate this
approximation generally is.
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6. Path Ensemble Monte Carlo

Science is what we understand well enough to explain to a com-
puter. — Donald E. Knuth [105]

6.1 Introduction

In modern statistical physics computer simulation and theory play
complementary roles. Computer simulations are used not only to validate
theories and their approximations, but also as a source of new observations
which then inspire and inform further analytic work. Therefore, in this
chapter I turn from the statistical theory of nonequilibrium systems, to the
efficient simulation of stochastic dynamics.

Recently, approximate theories have been developed that describe
large, rare fluctuations in systems with Langevin dynamics that have been
driven from equilibrium by a time dependent or non-gradient (i.e., not the
gradient of a potential) force field [106,107,108,109,110,111,112,113]. These
theories are only good approximations in the zero noise limit; computer sim-
ulations are needed to explore the behavior of the system and the accuracy
of the approximations at finite noise intensities. However, the direct sim-
ulation of the dynamics is inherently inefficient, since the majority of the
computation time is taken watching small, uninteresting fluctuations about
the stable states, rather than the interesting and rare excursions away from
those states. Transition path sampling [23, 24, 25, 26, 27, 28, 29, 30, 31] has
been developed as a Monte Carlo algorithm to efficiently sample rare tran-
sitions between stable or metastable states in equilibrium systems. Only
trajectories that undergo the desired transition in a short time are sampled.
In this chapter, transition path sampling is adapted to nonequilibrium, dis-
sipative, stochastic dynamics. The principle innovation is the development
of a new algorithm to generate trial trajectories.

The high friction limit of Langevin’s equations of motion describe over-
damped Brownian motion in a force field;

ẋi = Fi(x, t) + ξi(t). (6.1)

The state of the system is specified by the vector x. The system is subjected
to a systematic force F(x, t), and a stochastic force ξ(t), resulting from δ
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correlated white noise with variance ε;

〈ξi(t)〉 = 0, 〈ξi(t)ξj(0)〉 = ε δijδt. (6.2)

In this chapter we are interested in systems that are not in equilibrium,
either because the force field, F(x, t), is time dependent, or because it is
non-gradient. Dynamics of this class can model a large range of interesting
problems, including thermal ratchets [114], computer networks [115] and
chemical reactions [116, 117, 118]. As a particular example consider the
following reaction scheme, the Selkov model of glycolysis [119,118].

A
k1#
k2

X, X + 2Y
k3#
k4

3Y, Y
k5#
k6

B (6.3)

The concentrations of these species are written as the corresponding lower
case letter, i.e., a = A/V where V is the volume. The reaction vessel is
stirred to ensure spatially homogeneity, and the concentration of A and
B are held fixed by external sources or sinks. Therefore, the state of the
system can be described by just two parameters, (x = (x, y)), and the
effective force on the system is

F(x, y) =
(
k1a + k4y

3 − k2x− k3xy2, k6b + k3xy2 − k5y − k4y
3
)
. (6.4)

Fixing the concentrations of A and B continuously perturbs the system
away from equilibrium; this force is non-gradient and the dynamics are not
detailed balanced. The system fluctuates around one of two distinct stable
states, and occasionally makes a transition from one basin of attraction to
another.

The Selkov model is interesting and physical relevant, but suffers from
a proliferation of parameters. Instead, I will concentrate on two simpler
examples, which exhibit all of the interesting behavior of these nonequilib-
rium dynamics. An example of a system driven by a time dependent force
is the driven double well Duffing oscillator [111,120] (see Fig. 6.1)

F (x, t) = x− x3 + A cos(ωt) (6.5)

An extensively studied example of a non-gradient force field is the following
2 dimensional system (x = (x, y)) proposed by Maier and Stein [109];

F(x, y) =
(
x− x3 − αxy2,−µy(1 + x2)

)
. (6.6)

This field is not the gradient of a potential energy unless α = µ. The
potential energy surface for the gradient field, α = µ = 1, is shown in
Fig. 6.2, which should serve to orient the reader. Of primary interest are
the rare transitions between the stable states. For weak noise almost all
transitions closely follow the optimal trajectory, the most probable exit
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Figure 6.1: The potential energy of a driven double well Duffing oscillator,
U(x) = x2

2 −
x4

4 + A cos(ωt)x, with A = 0.264 and ω = 1.2. The top figure
is the potential energy as a function of time and position. Darker shading
indicates lower energies. The lower graphs show the potential at two times,
indicated by vertical lines in the upper figure. At the noise intensities
studied here (ε = 0.012) transitions between the metastable states are rare.
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Figure 6.2: The potential energy surface (top) and the corresponding force
field (bottom) for the Maier-Stein system, Eq. (6.6), with α = 1 and µ = 1.
Darker shading indicates lower energies. Note the stable states at (±1, 0),
the transition state at (0, 0) and the surface dividing the stable states (the
separatrix) at x = 0. These general features persist for the other values of
the parameters used in this chapter, although the force field is no longer
the gradient of a potential energy. For this equilibrium system the most
probable path connecting the stable states (and therefore the path that
dominates transitions in the weak noise limit) runs directly along the x
axis.
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Figure 6.3: Force fields of the Maier-Stein system with various parameters
(left), and the difference between that force field and the force field of the
same system with α = 1 and µ = 1 (right).
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path (MPEP) (See Fig. 6.1). There are extensive theoretical predictions
[112, 123] and simulation results [111, 121, 120, 122, 123] for these systems
against which the algorithms developed in this chapter can be tested.

Exploring the weak noise behavior of these systems has pushed con-
ventional simulation techniques to their limits, even for the very simple,
low dimensional dynamics so far considered. A single, very long trajec-
tory is generated, and one is obliged to wait for interesting events to occur.
Therefore, it is desirable to construct a simulation that runs as quickly as
possible. The state-of-the-art simulations utilize an analog electronic model
of the system of interest which is then driven by a zero-mean quasi-white
noise generator [120, 124]. However, such simulations cannot incorporate
any importance sampling of interesting events. The total simulation time
necessarily increases with the rarity of the event under study, which typi-
cally increases exponentially as the noise intensity decreases.

6.2 Path sampling Langevin dynamics∗

The transition path sampling methodology has been developed to effi-
ciently sample rare events in equilibrium systems. The main innovation is
to sample path space directly using a Monte Carlo algorithm. Instead of
passively waiting for the dynamics to generate an interesting trajectory, a
Markov chain of trajectories is constructed, each member of which incorpo-
rates the event of interest. This path ensemble Monte Carlo is completely
analogues to conventional Monte Carlo algorithms acting on configurational
ensembles. A trial trajectory is generated by a small, random change in
the previous trajectory; it is immediately rejected if the desired boundary
conditions are not met (typically that the path starts in region A and ends
in region B); and it is accepted with a probability that generates the correct
distributions of trajectories.

Unfortunately, the standard methods for efficiently sampling path
space can not be directly applied to nonequilibrium Langevin dynamics.
Perhaps the most obvious method for generating new trajectories in a
stochastic dynamics is the local algorithm [125, 59]. The path is repre-
sented by a chain of states, x =

(
x(0), x(1), . . . , x(L)

)
, and the probability

of the path, P[x], is written as a product of single time step transition
probabilities, P

(
x(t)→ x(t + 1)

)
;

P[x] = ρ
(
x(0)

) L−1∏

t=0

P
(
x(t)→ x(t + 1)

)
. (6.7)

∗Correspondence with D. G. Luchinsky, P. V. E. McClintock and R. Mannella greatly
aided development of path sampling for these driven Langevin dynamics.
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Here, ρ
(
x(0)

)
is the probability of the initial state of the path. A trial

trajectory, x′, is generated by changing the configuration at a single time
slice, it is immediately rejected if the the desired boundary conditions are
not fulfilled, and it is accepted with the Metropolis probability,

Pacc(x→ x′) = min
[
1,

P[x′]Pgen(x′ → x)
P[x]Pgen(x→ x′)

]
, (6.8)

which ensures a correctly weighted ensemble of paths. Here, Pgen(x→x′) is
the probability of generating the trial configurations x′.

Although effective [126], the local algorithm suffers from several defi-
ciencies, the most serious of which is that the relaxation time of the path
scales as L3, where L is the total number of time steps [127]. The driven
Duffing oscillator and the Maier-Stein system require on the order of thou-
sands of time steps to make the large, rare excursions from the stable states
that are of interest, which renders the local algorithm impractical.

Several simple and efficient methods of generating trial trajectories
(shooting and shifting [24]) have been developed for equilibrium dynamics.
Unfortunately, they are not directly applicable to nonequilibrium dynamics,
since they assume a knowledge of the initial state probability. Statistical
mechanics provides simple expressions for equilibrium probabilities, but no
such simple expression exists for nonequilibrium steady states.

Fortunately, there is an alternative representation of a stochastic path
that admits a simple and efficient path sampling algorithm. A stochastic
trajectory can be defined by the chain of states that the system visits, but it
can also be represented by the initial state and the set of random numbers,
the noise history, that was used to generate the trajectory. The probability
of the path can then be written as

P[x] = ρ
(
x(0)

) L−1∏

t=0

1√
2πε

exp{−ξ(t)2/2ε} (6.9)

where each ξ is a Gaussian random number of zero mean and ε variance.
This is a convenient representation, since we normally generate a stochastic
trajectory from a set of random numbers, and not random numbers from a
trajectory.

Suppose that we have the initial state and the noise history of a rela-
tively short path that undergoes the rare event in which we are interested.
(We will return to the problem of creating this initial path shortly.) A
trial path can be created by replacing the noise at a randomly chosen time
step with a new set of Gaussian random numbers. This trial trajectory is
accepted as a new member of the Markov chain of paths if it still under-
goes the event of interest. Since high friction Langevin dynamics is highly
dissipative, nearby trajectories converge rapidly, and a small change in the
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Figure 6.4: Convergence of paths in the driven Duffing oscillator with ε =
0.012, A = 0.264 and ω = 1.2. Each trajectory is generated with the same
noise history but a different initial state. Due to the highly dissipative
nature of the dynamics, all the paths rapidly converge into two trajectories,
one in each metastable state.

noise generally produces a small change in the trajectory. This phenomena
is illustrated in Fig. 6.4. Therefore, most trial trajectories are accepted.
Only rarely does the change in the noise produce a path that no longer
executes the event under study.

This noise sampling algorithm does not suffer from the poor scaling of
relaxation time with path length that renders the local algorithm impracti-
cal, since a local move in noise space induces a small but nonlocal move in
path space. Consider, for a moment, an unconstrained path. Then every
change in the noise history is accepted. After O(L) moves almost all of the
random numbers used to generate the path will have been replaced, and an
entirely new path will have been generated, one that is uncorrelated with
the previous path. Generating a trial trajectory from the noise history is
very fast since the required random numbers needed to generate the path
have already been created and stored. The amount of information that
must be stored scales with the number of time steps, but this is a trivial
amount of memory for the low dimensional systems considered here.

Unlike the local path sampling algorithm, sampling the noise history
allows a choice of methods for integrating the dynamics. For compatibility
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with previous digital simulations [128] we used the second order Runge-
Kutta [129] method. Compared to a simple finite difference equation, this
integrator is more stable and allows longer time steps. The maximum total
time of the trajectories was τ = 16, with a time step of ∆t = 1/512,
for a total of 8192 time slices. This time step is small enough to ensure
better than 90% trial move acceptance rate at any one time slice for the
noise intensities studied. It requires about 10 seconds of computer time (67
MHz IBM RS/6000 3CT) to generate a statistically independent path, and
about a day to generate a typical data set of approximately 8000 samples.
Unlike simulations (digital or analogue) without importance sampling these
simulation times are largely independent of the noise intensity. There is a
logarithmic increase of the transition time with decreasing noise [123], which
would eventually require longer paths. The smallest noise intensities used
to generate trajectories are significantly lower than the smallest values that
can be practically studied with an analogue simulation, where interesting
events are generated only about once a day [130].

An initial path can be generated using the following procedure. The
initial point of the path is fixed, an entirely random initial noise history is
generated and the end point of the corresponding trajectory is computed.
A small change is then made in the noise history, and this move is accepted
only if the new end point of the trajectory is closer to the desired final
region than the previous path. In this manner the final point of trajectory
can be dragged into the desired region, and a valid initial path obtained.
It is then necessary to relax this initial path so that the correct ensemble
of transition paths is generated.

A separate Monte Carlo move is used to sample the initial configura-
tion. A trial configuration is selected from an entirely separate, non-path
sampling simulation that has been relaxed to the steady state. A long tra-
jectory ensures that the final state is largely insensitive to the initial state,
and therefore that this trial move is often accepted, even if the change in
the initial state is large. Alternatively, the initial state can simply be fixed
at some representative point of the steady state ensemble. The simulation
results will not be altered if the trajectory is significantly longer than the
relaxation time of the system.

Further details and explicit implementation of this path sampling al-
gorithm can be found in Appendix A.

6.3 Results

The driven Duffing oscillator has been extensively studied via analogue
simulation [120, 111], which allows a direct test of path sampling. Results
from a path sampling simulation are shown in Fig. 6.5 for exactly the same
parameters and conditions previously published in Ref. [120]. Results from



6.3. Results 67

t

x

σ2
x

0

0

2 4 6 8 10 12

-0.5

-1.0

-1.5

Figure 6.5: A selection of paths for the driven Duffing oscillator with A =
0.264, ω = 1.2 and ε = 0.014. The trajectories start at x = −0.9 at time
t = 0, and make a rare excursion to the remote state −0.478 < x < −0.442
at time t = 7.3. Thin lines are individual paths, and the thick line is the
average path. The upper graph presents the position variance, σ2

x(t), as a
function of time.
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Figure 6.6: A representative sample of exit paths (thin lines) for the Maier-
Stein system with α = 6.67, µ = 1.0 and ε = 0.005, generated from a path
sampling simulation. These trajectories cluster around the most proba-
ble exit paths (MPEPs) (thick lines). The MPEPs where calculated via
simulated annealing of the transition paths.

path sampling and conventional simulations are indistinguishable. For this
simulation, the initial point of the path was fixed. The variance of position
is plotted in the upper part of the figure, and demonstrates just how quickly
the system forgets its initial fixed state. The imposed excursion to a remote
state at t = 7.3 produces a marked increase in the position variance over a
much longer time scale. Finally, it should be noted that this simulation does
not involve transitions between basins of attraction. Instead, the final point
of the path is confined to a small window, which is located in the same basin
of attraction as the initial point. Therefore, it should be possible to combine
path sampling and umbrella sampling [49] to scan a window across phase
space, and thereby calculate a nonequilibrium probability distribution at
the chosen time slice.

The Maier-Stein system has also been extensively studied using nu-
merical and analogue simulations [120, 122, 123]. Figure 6.3 shows several
representative Maier-Stein trajectories that carry the system from the sta-
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Figure 6.7: Exit location distributions for the Maier-Stein system with
α = 6.67, µ = 1.0 and ε = 0.005 (•), or ε = 0.0005 (5). Data points
are averages from a path sampling simulation (8192 samples). For these
parameters the exit location is a relatively flat, broad distribution that has
not been well characterized.

ble region around (1, 0) to the separatrix at x = 0. For µ = 1.0 and α > 4
the set of exit paths bifurcates [108,110]. Instead of following the x axis to
the transition state, trajectories instead make large excursions away from
the axis, and approach the transition state from the top or bottom right
quadrants. For weak noise, a single path sampling simulation of this system
would lock into either the top or bottom set of trajectories and equilibra-
tion in path space would be very slow. This is analogous to the behavior of
glasses and procedures developed to study such systems could be used to
aid path sampling. For the current system this is not an issue, since this
bifurcation is known to exist and the paths are symmetric about the x axis.

The finite noise trajectories cluster around the most probable exit
paths, which are the transition paths in the zero noise limit. These can
be calculated directly from theory, but here they where generated via grad-
ually annealing the system to very weak noise intensities (ε = 10−5) [24].
The acceptance rate for parts of the path approached 0% at ε ≈ 0.0005,
effectively freezing the trajectory in place. This represents the lower noise
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Figure 6.8: Exit location distributions for the Maier-Stein system with
α = 6.67, µ = 2.0 and ε = 0.05 (◦), 0.01 ($) or 0.005 (•). Symbols are
averages from a path sampling simulation (8192 samples) and lines are the
theoretical predictions, P (y) ∝ exp(−2y2/ε) [112,122].
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Figure 6.9: Exit location distributions for the Maier-Stein system with
α = 10, µ = 0.67 and ε = 0.04 (◦) or 0.005 (•). Symbols are averages from
path sampling simulations (8192 samples) and lines are the symmetrized
Weibull distribution, P (y) = |y|(2/µ)−1 exp(−|y/A|2/µ/ε) [112, 123]. The
parameter A ≈ 1 is determined from the behavior of the most probable
exit path near the saddle point, y = ±Axµ.
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Figure 6.10: Comparison of exit location distributions generated from
path sampling (•) and analogue simulation (5) at (a) α = 10, µ = 0.67
and ε = 0.011 (b) α = 10, µ = 0.2 and ε = 0.009. This analogue simulation
data, kindly donated by D. G. Luchinsky, is the same data as was used to
generate Fig. 2 of Ref. [123].
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limit for the current implementation. To study weaker noise it would be
necessary to use smaller time steps (which would increase the path length)
or smaller changes in the noise.

There are a variety of predictions regarding the distribution of exit
locations [112, 123], the point on the y axis where the transition path first
crosses from one stable state to the other. Figure 6.8 shows path sam-
pling simulation results and theoretical predictions for parameters where
it is known that the theoretical predictions are accurate. Excellent agree-
ment is observed, validating the path sampling algorithm. Figure 6.9 dis-
plays exit location distributions and theoretical predictions for parameters
(α = 10, µ = 0.67, ε = 0.04) where the agreement between the theory and
simulation is known to be poor [123]. Path sampling was used to study the
exit location distribution at a noise intensity (ε = 0.005) approximately 3
times smaller than previously possible. Even at this very low noise inten-
sity, the agreement between theory and simulation remains unsatisfactory.
Finally, Fig. (6.10) demonstrates excellent agreement between exit loca-
tion distributions calculated from path sampling, and that collected from
analogue experiments [123].
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7. Pathways to evaporation

Will you keep to the old path that evil men have trod?
— Job 22:15 [131]

7.1 Introduction

If two macroscopic hydrophobic surfaces are brought toward one an-
other in liquid water, a simple thermodynamic calculation indicates that
the plates will destabilize the liquid phase relative to the vapor phase when
they are closer than about 1000 Å [133, 134]. However, experimentally,
evaporation of the liquid is not observed to occur until the plate separa-
tion is reduced below about 100 Å [132, 133]. The explanation for this
discrepancy is that the liquid is metastable, and the rate of evaporation is
controlled by a rare nucleation event.

This phenomena is very challenging from a computational perspective.
It would be necessary to simulate at least 1

2 million water molecules in a
box 100×400×400 Å3. (To get the geometry correct the side length of the
surfaces should be significantly greater than the intersurface separation.)
This would require at least 1 CPU day of computation per picosecond on
a circa 1999 workstation. (This is a very optimistic estimation, based on a
linear extrapolation from a small system.) Our difficulties do not end with
the large size of the system. Although evaporation at a plate separation
of 100 Å is fast on a macroscopic time scale, it is still a rare event on a
microscopic time scale.

The first problem, the vast size of the system, can be ameliorated by
studying a much simpler model, a lattice gas with a grand canonical Monte
Carlo dynamics. This model does not conserve the energy, nor the number
of particles, but it does contain liquid–gas phase coexistence and surface
tension.

A recent computer simulation of this lattice gas model [134,135] serves
to illustrate the second difficulty, that the evaporation rate is controlled by a
rare event. A 12×512×512 lattice gas, confined between hydrophobic walls,
was initiated in the metastable liquid state. The bulk liquid rapidly dries
away from the walls, forming narrow vapor layers. The resulting liquid-
vapor surfaces fluctuate, and eventually a large, rare fluctuation causes the
two interfaces to touch, resulting in a vapor tube bridging the gap between
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the surfaces. This event occurred after ≈ 2× 104 Monte Carlo time steps∗,
and another 104 time steps were needed for complete evaporation of the
liquid. In contrast, the important nucleation event that carried the system
from one basin of attraction to another occurred in significantly less than
700 time steps.

Clearly, a direct simulation of surface induced evaporation is very in-
efficient. As an alternative, this chapter develops a local path sampling
algorithm for this model. Since the lattice gas model of a surface confined
fluid is isomorphic to the Ising model of a magnet, this work may have
wider utility [137].

7.2 Path sampling the kinetic Ising model

The Ising model [138] consists of a lattice of spins, labeled by the
index i. Each spin can have the values s(i) = ±1. (These values are
frequently referred to as up and down, in deference to the their origin as
states of magnetic spin.) The system is assumed to be in contact with a
constant temperature heat bath, and the equilibrium probability of a spin
configuration ν is

ρν = exp



+βF + βH
∑

{i}

s(i) + 1
2βJ

∑

{j:<i,j>}

s(i)s(j)



 . (7.1)

Here, J is a parameter that controls the strength of the spin-spin interac-
tions, H is an external field that controls the relative energy of up versus
down spins, F is the Helmholtz free energy, and β is the inverse tempera-
ture of the heat bath. The notation {j :<i, j>} indicates the set of all spins
j that are nearest neighbors of spin i. This set is determined by the chosen
lattice. This verbose, but flexible notation is used here in anticipation of
more complex situations that will arise shortly.

The Ising magnet is isomorphic to a lattice gas, a simple model of
coexisting liquid-gas phases on a lattice [49]. We make the transformation
by setting ni = (si + 1)/2, where ni = 0, 1 indicates whether the chosen
lattice site is empty (vapor) or occupied (fluid). The equilibrium probability
of a configuration ν becomes

ρν = exp



+βF̃ + βµ
∑

{i}

n(i) + 2βJ
∑

{j:<i,j>}

n(i)n(j)



 . (7.2)

∗The standard Monte Carlo time step is 1 attempted move for each particle or spin
in the system [136].
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Here, I have introduced the chemical potential µ = 2(H − J), and various
constants have been absorbed into the free energy, F̃ . Since both the tem-
perature and the chemical potential are now fixed, this lattice gas is in a
grand canonical ensemble. Arbitrarily, I will continue to speak of spins and
the Ising model, instead of particles and the lattice gas.

Since the Ising model does not have any intrinsic dynamics it is nec-
essary to construct a Monte Carlo dynamics for the system, the standard
choice being Glauber dynamics [139]. A spin is picked at random and
that spin is allowed to relax to equilibrium while the rest of the system
is held fixed. Regrettably, it is difficult to implement path sampling for
this dynamics. The chief reason is that, as with many Monte Carlo meth-
ods [59, 23], given a trajectory it is computationally expensive to calculate
the probability of that trajectory.

Fortunately, Glauber dynamics is not the only possibility. We are free
to pick whatever dynamics is most convenient, so long as that dynamics
reproduces the fundamental physics of the problem at hand. For equilib-
rium properties it is sufficient that the dynamics are balanced [42] so that
the correct equilibrium distribution is generated. However, for dynamical
properties it is also necessary to get certain broader aspects of the physics
correct [140]. Specifically, the dynamics should be homogeneous in space
and time, and should be rotationally invariant for quarter-turn (on a hyper-
cubic lattice) rotations. (This is generally sufficient to ensure full rotational
symmetry at large length scales.) In other words, the dynamics must treat
all spins and all lattice directions equally.

The following, particularly elegant dynamics, originally developed to
study critical phenomena in 3 dimensions [141], turns out to have a tractable
expression for the trajectory probability. The dynamics employs a (hyper)
cubic lattice, a checkerboard update scheme, and a heat bath acceptance
probability. A cubic lattice has the advantage that it can be readily gen-
eralized to an arbitrary number of dimensions, unlike, for example a 2D
hexagonal lattice. Moreover, a cubic lattice is bipartite; the lattice sites
can be separated into two disjoint sets such that no two sites in the same
set are adjacent. In 2 dimensions this leads to a checkerboard pattern. We
can refer to these disjoint sets as even and odd, depending on whether the
sum of the site coordinates, x + y + z + · · ·, are even or odd. It should
be apparent that all of the even or all of the odd spins can be subjected
to a Monte Carlo move simultaneously. Thus each spin of, for example,
the even set can be relaxed to equilibrium given the values of the neigh-
boring fixed odd spins. This trial acceptance probability is referred to as
a heat bath dynamics [136], and it is identical, bar a minor and almost ir-
relevant technicality [143], to the Glauber acceptance probability. A short,
illustrative trajectory for a 1D system is shown in Fig. 7.1. Note that if
periodic boundaries are used then the side length must be even to preserve
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Figure 7.1: An illustrative space-time configuration of a 1D Ising model
using the checkerboard/heat bath dynamics. Filled circles (•) indicate up
spins, unfilled (◦) down spins. At each time slice either all of the odd or
all of even spins are subjected to a Monte Carlo move. (Therefore the time
units used here are 1/2 of the standard Monte Carlo unit [136].) In the
figure above, only those spins that have just been updated at a particular
time step are drawn. The interdependencies of spin (2, 4) are shown by
arrows. The state probabilities of this spin are determined by the states of
spins (1, 5) and (1, 3), i.e., the neighboring spins in the previous time slice.
The heat bath acceptance rule ensures that the state of spin (2, 4) does not
depend on the state of that same spin at the previous time slice, (0, 4). In
a path sampling simulation an entire trajectory is stored. A Monte Carlo
update of the path proceeds by selecting a spin, and resetting its value
with probability proportional to the probability of the resulting trajectory.
Apart from the two spins in the previous time slice, the state of spin (2, 4)
also influences the path probability via its influence on (3, 5) and (3, 3), the
nearest neighbor spins in the next time slice. Spin (2, 4) is also indirectly
coupled to spins (2, 2) and (2, 6) via the the single spin partition function
of their common descendant in the next time slice. See Eq. (7.4).
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the bipartite nature of the lattice.
The probability of a particular spin state at a particular time step,

P
(
s(t, i)

)
, is determined by the states of the neighboring spins in the pre-

vious time slice, and can be explicitly written as

P
(
s(t, i)

)
=

exp
(
− βHs(t, i)− βJ

∑

{j:<i,j>}

s(t, i)s(t−1, j)
)

2 cosh
(
− βH − βJ

∑

{j:<i,j>}

s(t−1, j)
) . (7.3)

The probability of a trajectory, s, is given by a product of many single
spin probabilities

P[s] = ρ0

∏

t

∏

{i:even(t+x+y+···)}

P
(
s(t, i)

)

Here, ρ0 is the probability of the initial state, and the construct even(c) is
true if c is even. Thus the second product is only over the even space-time
coordinates, as illustrated in Fig. 7.1.

It is now straightforward to implement a local path sampling algorithm
for this dynamics. Given a trajectory, s, a trial trajectory is chosen by
choosing a spin at a particular location and time slice, and resetting it
to its equilibrium value, given the surrounding space-time path. This is
accomplished by calculating P[s(t, i) = +1, s]/P[s(t, i) = −1, s], the ratio
of the probability of the given path with s(t, i) up, against the same path
except that now s(t, i) is down. The explicit statement of this ratio is

P[s(t, i) = +1, s]
P[s(t, i) = −1, s]

= exp
(

+ 2βH + 2βJ
∑

{j:<i,j>},

θ=±1

s(t + θ, j)
)

×
∏

{j:<i,j>}





cosh
(
βH + βJ

∑

{k:<j,k>,k #=i}

(
s(t, k)−1

) )

cosh
(
βH + βJ

∑

{k:<j,k>,k #=i}

(
s(t, k)+1

) )




(7.4)

The second term couples spin (i, t) to its next nearest neighbors in the
same time slice. This is an indirect interaction, mediated by the nearest
neighbor spins in the next and previous time slices. The direct influence of
these nearest neighbors is encapsulated in the first term. It is interesting
to note that this expression is time symmetric.

A site on a square lattice has 4 nearest and 8 next nearest neighbors in
2D. (see Fig. 7.2) Therefore, a single spin update of the trajectory requires
information from 16 (= 2 × 4 + 8) spins. In 3D the total number of spins
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Figure 7.2: The nearest and next nearest neighbors on a hypercubic lattice
in 1, 2 and 3 dimensions.

that must be examined is 28 (= 2× 6 + 16), which is large, but tractable.
Fortunately it is rarely necessary to simulate the Ising model in 4 or more
dimensions.

7.3 Surface induced evaporation

As a proof of principle, the path sampling algorithm developed in the
previous section was used to study surface induced evaporation in 2 dimen-
sions. The system consists of a 17× 128 Ising model, with T = 1/β = 1.4,
J = 1, and a position dependent field, H. Down spins (−1) represent
vapor, and up spins (+1) liquid. For the bottom and top rows the field
is effectively set to H = −∞ so that the spins are fixed in the −1 state.
This represents the hydrophobic surfaces. The remaining spins feel a small
positive field, H = 0.04, which favors the liquid phase.

In an infinitely large system the walls would have a negligible effect,
and the liquid would be the stable phase. However, under these condition
the liquid between the plates is metastable. If the system is initiated in the
liquid phase, then the liquid rapidly dries away from the walls, producing
a vapor layer and a fluctuating liquid-gas interface. The following figure
illustrates a typical configuration of this metastable state.

Black square represent vapor, and white liquid. The interfaces fluctuate,
but remain close to the walls. Eventually a large fluctuation causes the
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interfaces to touch, creating a vapor gap connecting the top and bottom
surfaces. The vapor gap then rapidly grows and the liquid evaporates. This
next figure illustrates a configuration with a large gap. With overwhelming
probability, any path initiated from this configuration will rapidly relax
into the stable, vapor phase.

These two states were sampled from a standard, very long Monte Carlo
simulation of this system. These states where then used as initial and final
states of a relatively short (256 time steps) path, and the transition regime
was studied using the local path sampling algorithm. It required ≈ 0.1
seconds of computer time (on a circa 1999 workstation) for one Monte
Carlo update of the trajectory. (i.e., ≈ 128, 000 single spin updates, one
for each spin in the space-time configuration.) Independent paths where
generated in less than 100 steps. One such path is shown in Fig. 7.3.

The transition state was located by taking each configuration of this
path in turn, and shooting many trajectories from it. The transition state
is the configuration from which half the trajectories undergo evaporation
(defined as a vapor gap at least 8 cells wide) within 256 time steps. The
transition state for the path illustrated in Fig. 7.3 occurs at t = 112:

It is interesting to note that in this transition state the surfaces have not
quite met.

This 2D system demonstrates the practicality of path sampling, but the
real interest is surface induced evaporation in 3 dimensions. By adjusting J ,
H and β it is possible to match the chemical potential and surface tension
of water under ambient conditions [134]. Assuming (not unreasonably) that
the path length used here remains sufficient, then extending the 2D model
into the 3rd dimension increase the size of the system by a factor of 128.
Since each spin requires only 1 bit, the total memory storage is a very
modest 4 megabytes. The simulation time will increase by a larger amount
due to the larger number of neighbors in 3 dimensions. However, even a
conservative estimate suggests that a path update should take less than
1 minute. In short, path sampling of the full three dimensional problem
[134] is eminently practical. This will allow precise characterization of the
transition state of this model, as well as calculation of rate constants [23,28]
for a range of temperatures and plate separations.
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Figure 7.3: Surface induced evaporation in a 17 × 256 2D kinetic Ising
model, with T = 1.4, J = 1 and H = 0.04. Down spins (−1, black cells)
represent vapor and up spins (+1, white cells) liquid. The top and bottom
rows are constrained to be vapor. This transition path was generated using
the path sampling algorithm detailed in the text. The transition state
occurs at t = 112.
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8. Postscript

An alternative view is that this feeling that understanding is
just a few steps away is a recurring and necessary delusion that
keeps scientists from dwelling on the extent of the complexity
they face and how much more remains to be discovered. —
Martin Raff

A variety of exact far-from-equilibrium relations have been discussed
in this thesis, all of which are derived from the principle of microscopic re-
versibility (1.10), and all of which can be summarized by the nonequilibrium
path ensemble average, Eq. (2.1). I suspect that this relation encapsulates
all of the consequences that can be obtained from the preceding principle.
Very recent developments appear to support this view. Another variant
of the fluctuation theorem has been proposed [144], one that I did not
envisage. Yet it is contained within Eq. (2.1).

It is certainly possible that other interesting, maybe even useful, spe-
cializations of Eq. (2.1) await discovery. However, I believe that in the
immediate future a more fruitful area of investigation will be the deriva-
tion, and demonstration of useful approximations to the now know exact
relations, approximations that remain valid far-from-equilibrium.

Physics often proceeds by such not-entirely-rigorous approximations,
the validity of which are confirmed (or repudiated) by either computer sim-
ulation or experiment. Path ensemble Monte Carlo will, in all probability,
prove a useful tool for studying these approximations, as well as studying
the general behavior of nonequilibrium systems.
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A. Simulation of Langevin Dynamics.

For simplicity, consider a one dimensional system evolving according
to the high friction Langevin equation. (See Sec. 1.6)

ẋ = F (x, t) + ξ(t), 〈ξ(t)〉 = 0, 〈ξ(0)ξ(t)〉 = ε∆t. (A.1)

Here, F (x, t) is the systematic force and ξ(t) is the stochastic force resulting
from δ correlated white noise with variance ε. The Langevin equation can
be integrated numerically by discretizing time into segments of length ∆t
and assuming that the systematic forces vary linearly during that time
interval. This leads to the following finite difference equation [57];

x(t + ∆t) = x(t) + ∆t F (x, t) +
√

ε∆t R(t), (A.2)

where R(t) is a Gaussian random number of unit variance.
A second order Runge-Kutta method [129] gives a more accurate and

stable integrator [128], allowing larger time steps;

x′ = x(t) + ∆t F (x) +
√

ε∆t R(t) ,

x′′ = x(t) + ∆t F (x′) +
√

ε∆t R(t) ,

x(t + ∆t) = (x′ + x′′)/2 .

This algorithm requires more computation per time step, but this is irrel-
evant since the computational effort is dominated by the time required to
generate good pseudo-random numbers. For example, in a simulation of
the Maier-Stein system (see Chapter 6) using this Runge-Kutta integrator
and the ran2 generator [145], the random number generation consumed
over 90% of the simulation time.

The Gaussian random numbers where generated from the uniform dis-
tribution of ran2 using the Box-Muller transformation [146, 57]. There is
another, widely cited, method for generating Gaussian random numbers
due to Knuth [147, 57]. However, on a modern computer the Box-Muller
transformation is over 5 times faster than the Knuth method.
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/***********************************************************
Standard simulation of the Maier-Stein nonequilibrium system

For background on this system, and further references see
"Irreversibility of classical fluctuations studied in

analogue electrical circuits"
D.G. Luchinsky, P.V.E. McClintock, Nature v389 p463 (1997)

The integrator is based on example code donated by Dmitrii
G. Luchinsky.

8/98 Gavin Crooks gavinc@garnet.berkeley.edu
http://gold.cchem.berkeley.edu/~gavinc

***********************************************************/

#include <stdio.h>
#include <math.h>

/* Random Number Generator.
* genRanGaussian() returns a double drawn from
* a Gaussian distribution of unit varience.
*/
#include "genRan.h"

/* System paremeters */
#define epsilon (0.05) /*Variance of fluctuating force*/
#define alpha (1.)
#define mu (1.)

#define TSTEPSPER (512) /*Time steps per unit time*/
#define TSTEP (1./TSTEPSPER)/*Time per time step*/

#define SAMPLES 1000 /*Number of samples */

/*******************************/
main()
{

double x,y;
double grx,gry;
double x2,xa,ya,xf,yf;
int t,samples;

for(samples=0;samples<SAMPLES;samples++)
{

x=1.0;
y=0.0;
t=0;
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do { /*Second order Runge-Kutta integrator*/

t++;
grx =sqrt(epsilon*TSTEP)*genRanGaussian();
gry =sqrt(epsilon*TSTEP)*genRanGaussian();

x2 =x*x;
xa = x + TSTEP*x*(1.-x2-alpha*y*y) + grx;
ya = y - TSTEP*mu*(1.+x2)*y +gry;

x2 = xa*xa;
xf = x + TSTEP*xa*(1.-x2-alpha*ya*ya) + grx;
yf = y - TSTEP*mu*(1.+x2)*ya +gry;

x =(xf+xa)/2.;
y =(yf+ya)/2.;

} while(x>0.0); /* Stop when path crosses barrier */

printf("%d\t%lg\t%lg\n",t,x,y);
fflush(stdout);

}
}
/*-------------------------------------------------------------*/

The following code implements path sampling for the Maier-Stein sys-
tem, using the algorithms detailed in Chapter 6. Efficiency has been delib-
erately sacrificed for clarity and brevity.

/****************************************************************
Path Sampling Simulation of the Maier-Stein Nonequilibrium System

8/98-9/99 Gavin Crooks gavinc@garnet.berkeley.edu
http://gold.cchem.berkeley.edu/~gavinc

****************************************************************/

#include <stdio.h>
#include <math.h>

/* Random Number Generator.
* genRanf() returns a double [0,1)
* genRanGaussian() returns a double drawn from
* a Gaussian distribution of unit varience.
*/
#include "genRan.h"

int propagate(); /*Generate a trajectory*/



86 Simulation of Langevin Dynamics. A.

/* System paremeters */
#define epsilon (0.05) /*Variance of fluctuating force*/
#define alpha (1.)
#define mu (1.)

#define TSTEPSPER (512) /*Time steps per unit time*/
#define TSTEP (1./TSTEPSPER) /*Time per time step*/
#define TIME (16) /*Total time */
#define TBINS (TIME*TSTEPSPER) /*Total time steps*/

#define SAMPLES 1000 /*Number of samples */
#define RELAX TBINS /*MC moves per sample */

/* These variables specify the history of the system */
double x[TBINS]; /* x at time t */
double y[TBINS]; /* y at time t */
double grx[TBINS]; /* Random force at time t */
double gry[TBINS]; /* Random force at time t */

/*********************************************************/
main()
{

int t; /*time step index*/
int transition=TBINS; /*time step of first trasition*/
double oldX, oldgrX, oldgrY;
int relax, samples;

/**** Initilisation *****/
x[0]=1.0;
y[0]=0.0;

for(t=0;t<TBINS;t++) {
grx[t] = sqrt(epsilon*TSTEP)*genRanGaussian();
gry[t] = sqrt(epsilon*TSTEP)*genRanGaussian();

}

/* Generate an inital trasition path */
while(transition==TBINS)
{

oldX = x[TBINS-1];
/** Generate a trial trajectory **/
t = (int) floor(genRanf()*TBINS);
oldgrX = grx[t];
oldgrY = gry[t];
grx[t] = sqrt(epsilon*TSTEP)*genRanGaussian();
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gry[t] = sqrt(epsilon*TSTEP)*genRanGaussian();
transition=propagate();

/* If final point is further from the y axis than
the previous tracectroy, reject the trial move */

if( oldX < x[TBINS-1] )
{

grx[t]=oldgrX;
gry[t]=oldgrY;
transition=propagate();

}
}

/**** Main data collection loop *****/
for(samples=0;samples<SAMPLES;samples++)
{

for(relax=0;relax<RELAX;relax++)
{

/** Generate a trial trajectory **/
t = (int) floor(genRanf()*TBINS);
oldgrX = grx[t];
oldgrY = gry[t];
grx[t] = sqrt(epsilon*TSTEP)*genRanGaussian();
gry[t] = sqrt(epsilon*TSTEP)*genRanGaussian();
transition=propagate();

/*Reject trial trajectory if there is no transition*/
if(transition==TBINS)
{

grx[t] = oldgrX;
gry[t] = oldgrY;
transition = propagate();

}
}

printf("%d\t%lg\n",transition,y[transition]);
fflush(stdout);

}
}

/* Generate a path using the inital state stored in x[0] & y[0],
* and the noise history stored in grx[t] & gry[t]. Return the
* first time step at which x[t] is negative. Else return TBINS
*/
int propagate()
{

int t;
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int transition=TBINS;

double x2,xa,ya,xf,yf;

for(t=0;t<(TBINS-1);t++)
{

x2 =x[t]*x[t];
xa = x[t] + TSTEP*x[t]*(1.-x2-alpha*y[t]*y[t]) + grx[t];
ya = y[t] - TSTEP*mu*(1.+x2)*y[t] +gry[t];

x2 = xa*xa;
xf = x[t] + TSTEP*xa*(1.-x2-alpha*ya*ya) + grx[t];
yf = y[t] - TSTEP*mu*(1.+x2)*ya +gry[t];

x[t+1] =(xf+xa)/2.;
y[t+1] =(yf+ya)/2.;

if((transition == TBINS) && (x[t+1]<0.0)) transition=t+1;
}
return transition;

}
/*-------------------------------------------------------------*/

Beware of bugs in the above code; I have only proved it correct,
not tried it. — Donald E. Knuth [148]



89

Bibliography

I got another quarter hundred weight of books on the subject last
night. I have not read them all through.

W. Thompson, Lecture IX, p87

[1] Denis J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of
second law violations in shearing steady states” Phys. Rev. Lett. 71,
2401–2404 (1993).

[2] Denis J. Evans and Debra J. Searles, “Equilibrium microstates which
generate second law violating steady states” Phys. Rev. E 50, 1645–
1648 (1994).

[3] G. Gallavotti and E. G. D. Cohen, “Dynamical ensembles in nonequi-
librium statistical mechanics” Phys. Rev. Lett. 74, 2694–2697 (1995).

[4] G. Gallavotti and E. G. D. Cohen, “Dynamical ensembles in station-
ary states” J. Stat. Phys. 80, 931–970 (1995).

[5] Denis J. Evans and Debra J. Searles, “Causality, response theory,
and the second law of thermodynamics” Phys. Rev. E 53, 5808–5815
(1996).

[6] G. Gallavotti, “Chaotic hypothesis: Onsanger reciprocity and
fluctuation-dissipation theorem” J. Stat. Phys. 84, 899–925 (1996).

[7] E. G. D. Cohen, “Dynamical ensembles in statistical mechanics”
Physica A 240, 43–53 (1997).

[8] Giovanni Gallavotti, “Chaotic dynamics, fluctuations, nonequilibrium
ensembles” Chaos 8, 384–392 (1998).

[9] Jorge Kurchan, “Fluctuation theorem for stochastic dynamics” J.
Phys. A 31, 3719–3729 (1998) eprint: cond-mat/9709304.

[10] David Ruelle, “Smooth dynamics and new theoretical ideas in
nonequilibrium statistical mechanics” J. Stat. Phys. 95, 393–468
(1999) eprint: mp arc/98-770.



90 Bibliography

[11] Joel L. Lebowitz and Herbert Spohn, “A Gallavotti–Cohen-type sym-
metry in the large deviation functional for stochastic dynamics” J.
Stat. Phys. 95, 333–365 (1999) eprint: cond-mat/9811220.

[12] Christian Maes, “The fluctuation theorem as a Gibbs property” J.
Stat. Phys. 95, 367–392 (1999) eprint: mp arc/98-754.

[13] Gavin E. Crooks, “Entropy production fluctuation theorem and the
nonequlibrium work relation for free energy differences” Phys. Rev.
E 60, 2721–2726 (1999) eprint: cond-mat/9901352.

[14] E. G. D. Cohen and G. Gallavotti, “Note on two theorems in nonequi-
librium statistical mechanics” J. Stat. Phys. 96, 1343–1349 (1999)
eprint: cond-mat/9903418.

[15] Gary Ayton and Denis J. Evans, “On the asymptotic convergence of
the transient and steady state fluctuation theorems” eprint: cond-
mat/9903409.

[16] C. Maes, F. Redig, and A. Van Moffaert, “On the definition of entropy
production via examples” eprint: mp arc/99-209.

[17] C. Jarzynski, “Hamiltonian derivation of a detailed fluctuation theo-
rem” eprint: cond-mat/9908286. Submitted to J. Stat. Phys.

[18] Gavin E. Crooks, “Path ensembles averages in systems driven far
from equilibrium” eprint: cond-mat/9908420. In press Phys. Rev. E.

[19] Debra J. Searles and Denis J. Evans, “Fluctuation theorem for sto-
castic systems” Phys. Rev. E 60, 159–164 (1999) eprint: cond-
mat/9901258.

[20] C. E. Shannon, “A mathematical theory of communication” Bell Syst.
Tech. J. 27, 379–423, 623–656 (1948). Reprinted in [21] and [22].

[21] Claude E. Shannon and Warren Weaver, The Mathematical Theory of
Communication. University of Illinois press, Urbana 1963. (Mostly
a reprint of [20]. The additional material is widely regarded as super-
fluous. Note the subtle, but significant change in title.)

[22] Claude Elwood Shannon, Claude Elwood Shannon : Collected papers.
IEEE Press, 1993. Edited by N. J. A. Sloane and Aaron D. Wyner.

[23] Christoph Dellago, Peter G. Bolhuis, Félix S. Csajka, and David
Chandler, “Transition path sampling and the calculation of rate con-
stants” J. Chem. Phys. 108, 1964–1977 (1998).



Bibliography 91

[24] Christoph Dellago, Peter G. Bolhuis, and David Chandler, “Efficient
transition path sampling: Application to Lennard-Jones cluster rear-
rangments” J. Chem. Phys. 108, 9236–9245 (1998).

[25] Peter G. Bolhuis, Christoph Dellago, and David Chandler, “Sampling
ensembles of deterministic transition pathways” Faraday Discussion
Chem. Soc. 110, 421–436 (1998).

[26] Félix Csajka and David Chandler, “Transition pathways in a many-
body system: Application to hydrogen-bond breaking in water” J.
Chem. Phys. 109, 1125–1133 (1998).

[27] D. Chandler, Finding transition pathways: Throwing ropes over
rough mountain passes, in the dark In B. J. Berne, G. Ciccotti, and
D. F. Coker, editors, Computer Simulation of Rare Events and Dy-
namics of Classical and Quantum Condensed-Phase Systems – Clas-
sical and Quantum Dynamics in Condensed Phase Simulations pages
51–66 Singapore 1998. World Scientific.

[28] Christoph Dellago, Peter G. Bolhuis, and David Chandler, “On the
calculation of reaction rate constants in the transition path ensemble”
J. Chem. Phys. 110, 6617–6625 (1999).

[29] Philip L. Geissler, Christoph Dellago, and David Chandler, “Chem-
ical dynamics of the protonated water trimer analyzed by transition
path sampling” Phys. Chem. Chem. Phys. 1, 1317–1322 (1999).

[30] Philip L. Geissler, Christoph Dellago, and David Chandler, “Kinetic
pathways of ion pair dissociation in water” J. Phys. Chem. B 103,
3706–3710 (1999).

[31] Gavin E. Crooks and David Chandler, “Efficient transition path sam-
pling for nonequilibrium stochastic dynamics”.

[32] R. P. Feynman, Statistical Mechanics: A set of lectures. Addison-
Wesley, 1972.

[33] J. Willard Gibbs, Elementary principles in statistical mechanics, de-
veloped with especial reference to the rational foundation of thermo-
dynamics. Yale University press, 1902.

[34] C. Jarzynski, “Nonequilibrium equality for free energy differences”
Phys. Rev. Lett. 78(14), 2690–2693 (1997).

[35] Gavin E. Crooks, “Nonequilibrium measurements of free energy dif-
ferences for microscopically reversible Markovian systems” J. Stat.
Phys. 90, 1481–1487 (1998).



92 Bibliography

[36] E. T. Jaynes, “Information theory and statistical mechanics” Phys.
Rev. 106, 620–630 (1957). Reprinted in [38].

[37] E. T. Jaynes, “Information theory and statistical mechanics. II” Phys.
Rev. 108, 171–190 (1957). Reprinted in [38].

[38] R. D. Rosenkrantz, editor E. T. Jaynes: Papers on Probability, Statis-
tics, and Statistical Physics. Reidel, Dordrecht, Holland 1983.

[39] J. R. Norris, Markov Chains. Cambridge University Press, 1997.
(Useful reference for Markov chains.)

[40] J. L. Doob, Stochastic processes. John Whiley, New York 1953.

[41] John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumer-
able Markov Chains. Springer-Verlag, New York 2nd. edition 1976.

[42] Vasilios I. Manousiouthakis and Michael W. Deem, “Strict detailed
balance is unnecessary in Monte Carlo simulation” J. Chem. Phys.
110, 2753–2756 (1999).

[43] P. C. G. Vassiliou, “The evolution of the theory of non-homogeneous
Markov systems” Appl. Stoch. Model. D. A. 13, 59–176 (1997). (Use-
ful reference for non-homogeneous Markov Chains.)

[44] Rudolf Clausius, Die mechanische Warmetheorie (The mechanical
theory of heat). F. Vieweg und Sohn, 1879.

[45] P. A. M. Dirac, “The conditions for statistical equilibrium between
atoms, electrons and radiation” Proc. Rol. Soc. A 106, 581–596
(1924). (Definition and discussion of the “Principle of Detailed Bal-
ance”)

[46] S. R. de Groot and P. Mazur, Non-equilibrium thermodynamics.
North-Holland, Amsterdam 1962.

[47] Richard C. Tolman, “Duration of molecules in upper quantum states”
Phys. Rev. 23, 693–709 (1924). (First use of the term “principle of
microscopic reversibility”.)

[48] Richard C. Tolman, The Principles of Statistical Mechanics. Oxford
University Press, London 1938. pp. 163 and 165. (Early reference for
the “principle of microscopic reversibility”.)

[49] David Chandler, Introduction to Modern Statistical Mechanics. Ox-
ford University Press, New York 1987.



Bibliography 93

[50] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:
Nonequilibrium Statistical Mechanics. Springer-Verlag, New York
1985.

[51] Jerzy Luczka, Mariusz Niemiev, and Edward Piotrowski, “Exact so-
lution of evolution equation for randomly interrupted diffusion” J.
Math. Phys. 34, 5357–5366 (1993).
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nalen der Physik und Chemie 125, 353 (1865). (Introduction of the
term entropy, and statement of Clausius’s form of the second law of
thermodynamics.)

[78] William Francis Magie, A Source Book in Physics. McGraw-Hill,
1935.

http://rsc.anu.edu.au/~evans/Book%20Contents.pdf


Bibliography 95

[79] C. H. Bennett, “Efficient estimation of free energy differences from
Monte Carlo data” J. Comput. Phys. 22, 245–268 (1976).

[80] K. K. Mon and Robert B. Griffiths, “Chemical potential by gradual
insertion of a particle in Monte Carlo simulation” Phys. Rev. A 31,
956–959 (1985).

[81] T. P. Straatsma and J. A. McCammon, “Computational alchemy”
Annu. Rev. Phys. Chem. 43, 407–435 (1992).

[82] Robert W. Zwanzig, “High-temperature equation of state by a per-
turbation method: I. Nonpolar gases” J. Chem. Phys. 22, 1420–1426
(1954). (This is the standard reference for thermodynamic perturba-
tion because it was the oldest paper on TP referenced in [79]. Appar-
ently the method predates even this paper.)

[83] D. L. Beveridge and F. M. DiCapua, “Free energy via molecular sim-
ulation: Applications to chemical and biomolecular systems” Annu.
Rev. Biophys. Biophys. Chem. 18, 431–492 (1989).

[84] Randall J. Radmer and Peter A. Kollman, “Free energy calculation
methods: A theoretical and empirical comparison of numerical errors
and a new method for qualitative estimates of free energy changes”
J. Comput. Chem. 18, 902–919 (1997).

[85] Ryogo Kubo, “Generalized cumulant expansion method” J. Phys.
Soc. Jpn 17, 1100–1120 (1962).

[86] Benoit B. Mandelbrot, The fractal geometry of nature. W. H. Free-
man, New York 1977.

[87] Melville S. Green, “Markoff random processes and the statistical me-
chanics of time-dependent phenomena” J. Chem. Phys. 20, 1281–
1295 (1952). (Linear response.)

[88] Melville S. Green, “Markoff random processes and the statistical me-
chanics of time-dependent phenomena. II. Irreversible processes in
fluids” J. Chem. Phys. 22, 398–413 (1954). (Linear response.)

[89] Ryogo Kubo, “Statistical-mechanical theory of irreversible processes,
I. General theory and simple applications to magnetic and conduction
problems” J. Phys. Soc. Jpn. 12, 570 (1957). (Linear response)

[90] Robert Zwanzig, “Time-correlation functions and transport coeffi-
cients in statistical mechanics” Annu. Rev. Phys. Chem. 16, 67–102
(1965). (Linear response)



96 Bibliography

[91] Munir S. Skaf and Branka M. Ladanyi, “Molecular dynamics simu-
lation of solvation dynamics in methanol-water mixtures” J. Phys.
Chem. 100, 18258–18268 (1996). (An example of a system for which
linear response does not work.)

[92] Y. Pomeau and P. Résibois, “Time dependent correlation functions
and mode-mode coupling theories” Phys. Rep. 19, 63–139 (1975).

[93] Kyozi Kawasaki and James D. Gunton, “Theory of nonlinear trans-
port processes: Nonlinear shear viscosity and normal stress effects”
Phys. Rev. A 8, 2048–2064 (1973).

[94] Lars Onsanger, “Reciprocal relations in irreversible processes. I.”
Phys. Rev. 37, 405–426 (1931).

[95] Lars Onsanger, “Reciprocal relations in irreversible processes. II.”
Phys. Rev. 38, 2265–2279 (1931).

[96] Robert Graham, Onset of cooperative behavior in nonequilibrium
steady states In G. Nicolis, G. Dewel, and J. W. Turner, editors,
Order and fluctuations in equilibrium and nonequilibrium statistical
mechanics pages 235–273 New York 1981. Wiley.

[97] Gregory L. Eyink, “Action principle in statistical dynamics” Prog.
Theor. Phys. Suppl. 130, 77–86 (1998).

[98] Yoshitsugu Oono and Marco Paniconi, “Steady state thermodynam-
ics” Prog. Theor. Phys. Suppl. 130, 29–44 (1998).

[99] William M. Visscher, “Transport processes in solids and linear-
response theory” Phys. Rev. A 10, 2461–2472 (1974). (Transient
time correlation function.)

[100] James W. Dufty and Michael J. Lindenfeld, “Nonlinear transport in
the Boltzmann limit” J. Stat. Phys. 20, 259–301 (1979). (Transient
time correlation function.)

[101] E. G. D. Cohen, “Kinetic-theory of non-equilibrium fluids” Physica
118, 17–42 (1983). (Transient time correlation function. See also
[104])

[102] Gary P. Morriss and Denis J. Evans, “Application of transient corre-
lation functions to shear flow far from equilibrium” Phys. Rev. A 35,
792–797 (1987). (Transient time correlation function)

[103] Janka Petravic and Denis J. Evans, “Nonlinear response for nonau-
tonomous systems” Phys. Rev. E 56, 1207–1217 (1997). (Transient
time correlation function)



Bibliography 97

[104] E. G. D. Cohen, “Correction” Physica 120, 1–2 (1983). (Of [101].)

[105] Marko Petkovsek, Herbert S. Wilf, and Doron Zeilberger, A=B.
Wellesley, 1996.

[106] M. I. Dykman, P. V. E. McClintock, V. N. Smelyanski, N. D. Stein,
and N. G. Stocks, “Optimal paths and the prehistory problem for
large fluctuations in noise-driven systems” Phys. Rev. Lett. 68, 2718–
2721 (1992).

[107] Robert S. Maier and D. L. Stein, “Transition-rate theory for nongra-
dient drift fields” Phys. Rev. Lett. 69, 3691–3695 (1992).

[108] Robert S. Maier and D. L. Stein, “Effect of focusing and caustics on
exit phenomena in systems lacking detailed balance” Phys. Rev. Lett.
71, 1783–1786 (1993).

[109] Robert S. Maier and D. L. Stein, “Escape problem for irreversible
systems” Phys. Rev. E 48, 931–938 (1993). (Proposal of the 2-
dimensional Maier-Stein system.)

[110] Robert S. Maier and D. L. Stein, “A scaling theory of bifurcations in
the symmetric weak-noise escape problem” J. Stat. Phys. 83, 291–357
(1996).

[111] M. I. Dykman, D. G. Luchinsky, P. V. E. McClintock, and V. N.
Smelyanskiy, “Corrals and critical behavior of the distribution of fluc-
tuational paths” Phys. Rev. Lett. 77, 5229–5232 (1996). (Theoretical
results and analogue simulations of the driven Duffing oscillator.)

[112] Robert S. Maier and Daniel L. Stein, “Limiting exit location distri-
butions in the stochastic exit problem” SIAM J. Appl. Math. 57,
752–790 (1997).

[113] V. N. Smelyanskiy, M. I. Dykman, and R. S. Maier, “Topological
features of large fluctuations to the interior of a limit cycle” Phys.
Rev. E. 55, 2369–2391 (1997).

[114] Marcelo O. Magnasco, “Forced thermal ratchets” Phys. Rev. Lett. 71,
1477–1481 (1993).

[115] Jong-Tae Lim and Semyon M. Meerkov, “Theory of Markovian access
to collision channels” IEEE Trans. Commun. 35, 1278–1288 (1987).

[116] John Ross, Katharine L. C. Hunt, and Paul M. Hunt, “Thermody-
namic and stochastic theory for nonequilibrium systems with multi-
ple reactive intermediates: The concept and role of excess work” J.
Chem. Phys. 96, 618–629 (1992).



98 Bibliography

[117] M. I. Dykman, Eugenia Mori, John Ross, and P. M. Hunt, “Large
fluctuations and optimal paths in chemical kinetics” J. Chem. Phys.
100, 5735–5750 (1994).

[118] M. I. Dykman, V. N. Smelyanskiy, R. S. Maier, and M. Silverstein,
“Singular features of large fluctuations in oscillating chemical sys-
tems” J. Phys. Chem. 100, 19197–19209 (1996).

[119] E. E. Sel’kov, “Self-oscillations in glycolysis” Eur. J. Biochem. 4,
79–86 (1968).

[120] D. G. Luchinsky and P. V. E. McClintock, “Irreversibility of classical
fluctuations studied in analogue electrical circuits” Nature 389, 463–
466 (1997).

[121] D. G. Luchinsky, “On the nature of large fluctuations in equilibrium
systems: observation of an optimal force” J. Phys. A 30, L577–L583
(1997).

[122] D. G. Luchinsky, R. S. Maier, R. Mannella, P. V. E McClintock,
and D. L. Stein, “Experiments on critical phenomena in a noisy exit
problem” Phys. Rev. Lett. 79, 3109–3112 (1997).

[123] D. G. Luchinsky, R. S. Maier, R. Mannella, P. V. E McClintock, and
D. L. Stein, “Observation of saddle-point avoidance in noise-induced
escape” Phys. Rev. Lett. 82, 1806–1809 (1999).

[124] D. G. Luchinsky, P. V. E. McClintock, and M. I. Dykman, “Analogue
studies of nonlinear systems” Rep. Prog. Phys. 61, 889–997 (1998).

[125] Lawrence R. Pratt, “A statistical method for identifying transition
states in high dimensional problems” J. Chem. Phys. 85, 5045–5048
(1986).

[126] Marco Paniconi and Michael F. Zimmer, “Statistical features of
large fluctuations in stochastic systems” Phys. Rev. E 59, 1563–1569
(1999). (Path ensemble Monte Carlo (“space-time Monte Carlo”) of
Langevin dynamics using a local algorithm.)

[127] D. M. Ceperley, “Path integrals in the theory of condensed helium”
Rev. Mod. Phys. 67, 279–355 (1995).

[128] D. G. Luchinsky, 1998. private communication.

[129] Riccardo Mannella, Numerical integration of stochastic differential
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Clausius theorem, 36, 39
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baths, 15

entropy production, 25, 29
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rem, see fluctuation theorem
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ε, 59
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F : free energy, 4
F: force, 59
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Feynman, R. P., 1, 3
fluctuation theorem, 28–38

Gallavotti-Cohen, 28
heat, 37
steady state, 35
transient, 21, 25, 28, 42
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fluctuation-dissipation ratio, 43
fluctuation-dissipation theorem, 51

nonlinear, 53
free energy, 7, 40
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namic integration, thermody-
namic integration, thermody-
namic perturbation, 39–50

Gibbs measure, 19
Gibbs, J. W., 21
Glauber dynamics, 76
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H: magnetic field strength, 75
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excess, 57
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heat bath dynamics, 76
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path ensemble Monte Carlo, 75
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jump probability, 11
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Markov process, 13–15
Markov property, 4
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Hamiltonian dynamics, 17
Langevin dynamics, 18
Markov chain, 9, 13
Markov process, 15
multiple baths, 15
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Monte Carlo, 6, 76
most probable exit path, 63
most probable exit paths, 69
MPEP, see most probable exit path

noise history, 64
non-gradient force field, 58, 59
nonequilibrium, 3
nonequilibrium distributions, 26, 53

P: trajectory probability, 9
p: pressure, 16
Pacc: trial acceptance probability, 64

path ensemble averages, see fluctuation
theorem, Jarzynski relation,
Kawasaki response, 21–24

path ensemble Monte Carlo, 58, 63–73,
75–80

initial path, 66
initial state, 66
kinetic Ising model, 75
Langevin dynamics, 63
local algorithm, 63, 64, 78

efficiency, 64
noise sampling, 64–66, 85

efficiency, 65
shifting, 64
shooting, 64

path function, 7, 22
path integral, 23
path quench, 73
path sampling, see path ensemble

Monte Carlo
Pgen: trial generating probability, 64
π: invariant distribution, 4
π-dual, 8
propagator, 13

Q: heat, 6
Q: transition rate matrix, 11

Raff, Martin, 82
random number generation, 83
recursion, 102
Rokhsar, D., 42
Runge-Kutta method, 66, 83

S: entropy, 16
Sbaths, 16
Selkov model, 59
simulated annealing, 15, 73
slow growth thermodynamic integra-

tion, 40
state function, 7
steady state, 54

entropy, 57
probability distributions, 55

surface induced evaporation, 74–80

T : temperature, 4
thermal ratchets, 59
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thermodynamic integration, 40, 41, 43
thermodynamic perturbation, 24, 40,

41, 43
time evolution operator, 13
time reversal, 7–9, 12, 14
transient time correlation function, 57
transition matrix, 5
transition path sampling, see path en-

semble Monte Carlo
transition probability, 5, 11, 13
transition rate matrix, 11
TTCF, see transient time correlation

function

U : time evolution operator, 13

V : volume, 16

W: work, 6
Wd: dissipative work, 7
Weibull distribution, 71
work, 6–7, 9, 18

dissipative, 7, 9, 22
excess, 55
reversible, 7, 22, 40

Wr: reversible work, 7

ξ: Gaussian random variable, 59
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